
THE IMPACT OF MESSAGE TRAFFIC ON

MULTICOMPUTER MEMORY HIERARCHY PERFORMANCE

BY

SCOTT DOV PAKIN

B.S., Carnegie Mellon University, 1992

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

Abstract

Multicomputer cache performance is highly sensitive to interprocessor message traffic. The
widening gap between microprocessor speeds and primary memory latencies means small in-
creases in the number of cache misses can have a severe impact on application performance. It
is therefore critical to reduce cache misses. While there are a number of factors that contribute
to increased cache misses, of particular concern to system designers and application writers
alike is multicomputer message traffic. In this thesis, we examine the extent to which handling
message traffic increases cache misses.

Multicomputer network interfaces are connected to the local memory hierarchy. The specific
connection point affects performance. Connecting the network interface to higher (i.e. smaller,
but faster) levels of the memory hierarchy improves a node’s parallel performance by reducing
communication latency. In contrast, connecting the network interface to lower (i.e. larger, but
slower) levels of the memory hierarchy improves sequential performance by retaining program
data in the higher levels. However, the extent to which message handling displaces program
data in the cache in either scheme was has not previously been explored.

Using register-transfer-level trace-based simulators of two representative multicomputer
nodes, we performed extensive tests (over 70 billion memory references) with a variety of system
configurations. Our results indicate that message traffic has a tremendous impact on multi-
computer node performance. A multicomputer with a primary memory–network interface and
average-sized cache suffers significantly more cache misses in the presence of message traffic
than in its absence. For example, a memory–network multicomputer with a 16 kilobyte (KB)
cache that processes an average of one word of message data per 50 clock periods can be ex-
pected to observe up to 20% more misses on a given application than a similarly-configured
uniprocessor. Furthermore, increasing the cache size increases a multicomputer’s sensitivity to
message traffic. Therefore, a multicomputer with a cache–network interface that performs an
average amount of communication per unit time benefits less from a larger cache than would
a uniprocessor. Our results show that doubling the cache size from 16KB to 32KB decreases
cache misses by 55% for one application on a uniprocessor but by only 35% on a cache–network
multicomputer. Finally, we show that for a fixed message volume, control (i.e. short) messages
affect the cache more than data (i.e. long) messages. After presenting our findings, we discuss
the significance of these findings and propose starting points for future research.

iii

Acknowledgements

“I can’t give you brains, but I can give you a diploma.”

L. Frank Baum, The Wizard of Oz

To start, I would like to thank my advisor, Professor Andrew A. Chien, for his advice and
guidance on my research, for his comments and criticism on my thesis and previous documents,
and for “giving me brains”—helping further my education through innumerable technical dis-
cussions on a variety of topics. I’m thankful that for all the delays and pitfalls I faced along
the way to finishing my research and thesis, he didn’t give up on me.

Second, I am much obliged to John Plevyak and Vijay Karamcheti for reviewing this thesis
and providing me with a wealth of insightful comments. Their feedback helped clarify and
improve a number of sections that were evidentally not as lucid as I had thought. Also, Ju-
lian Dolby deserves thanks for frequently suggesting better phrasings for awkward-to-express
sentences.

I’m grateful to everyone in the Concurrent Systems Architecture Group for some terrific
arguments and discussions on everything from politics to technology to The Simpsons, for their
wit, humor, intelligence, and good cheer, and for providing a atmosphere in which everyone
helps everyone else along. I could not have hoped for a better set of peers.

Finally, I thank my parents for their bottomless love, support, and encouragement. I thank
my grandparents for never stopping loving me, even though I’ve been so busy with research
that I’ve had far too little time to spend with them. And I thank my sister for . . . I don’t know;
she’s probably done something nice for me at some point.

iv

Table of Contents

Chapter

1 Introduction . 1
1.1 The Problem . 2

1.1.1 Memory Hierarchies . 2
1.1.2 Network Interfaces . 3
1.1.3 The Conflict . 3

1.2 The Approach . 6
1.3 Related Work . 6
1.4 Results . 7
1.5 Thesis Overview . 7

2 Background . 8
2.1 Cache–Network Interface . 8

2.1.1 Basic Design . 9
2.1.2 Cache- and Memory-Network Interface . 10

2.2 Memory-Network Interface . 12
2.2.1 Basic Design . 13
2.2.2 Messaging Coprocessors . 14
2.2.3 Fine-Grained Systems . 15

2.3 Summary . 17

3 Experimental Framework . 18
3.1 Conceptual Model . 19
3.2 Simulator . 19

3.2.1 Overview . 19
3.2.2 Simulation Tools . 19
3.2.3 Simulation Structure . 21
3.2.4 Simulation Structure . 25

3.3 Trace Data . 27
3.4 Simulation Parameters . 29

3.4.1 Node Architecture . 30
3.4.2 Message Rate . 30
3.4.3 Cache Size . 30
3.4.4 Long Message Percentage . 30

3.5 Dependent Variables . 31
3.6 Component Speeds . 31

v

4 Simulation Results and Analysis . 32
4.1 Base Misses . 32
4.2 Misses versus Message Rate . 33
4.3 Misses versus Cache Size . 44
4.4 Misses versus Message Size . 51

5 Discussion . 58
5.1 Present Effects of Message Handling on the Cache 58
5.2 Future Effects of Message Handling on the Cache 59

6 Summary and Conclusions . 61

7 Future Work . 63
7.1 More Accurate Simulators . 63
7.2 Larger Traces . 63
7.3 Additional Experiments . 64
7.4 Alternative Architectures . 64

Appendix . 66

A Pseudocode for Simulator Modules . 66
A.1 CPU . 66

A.1.1 Cache–Network Simulator . 66
A.1.2 Primary Memory–Network Simulator . 67

A.2 Cache . 68
A.3 Write Buffer . 69
A.4 Bus Interface . 70
A.5 Bus . 71
A.6 Memory and Memory Controller . 71
A.7 Network Interface . 71

A.7.1 Cache–Network Simulator . 71
A.7.2 Primary Memory–Network Simulator . 72

A.8 Network Fringe . 73

B Derivation of “Reasonable” Message Rates . 75

C Raw Data . 77
C.1 Varying Message Rate . 77
C.2 Varying Cache Size . 80
C.3 Varying Message Size . 82

D Data to Accompany Graphs . 86
D.1 Data Corresponding to Section 4.2 . 86
D.2 Data Corresponding to Section 4.3 . 88
D.3 Data Corresponding to Section 4.4 . 91

Bibliography . 92

vi

List of Tables

1.1 Memory hierarchy of the DEC 4000 AXP . 3

3.1 Cache module operations . 26
3.2 Application traces . 28
3.3 Simulation parameters . 29

5.1 Latency and bandwidth of the CM-5 and Paragon 58

B.1 Computer and application characteristics . 75
B.2 Derivation of average message rate . 76

C.1 pthor, varying message rate, 16KB cache, 91% long messages by volume 77
C.2 doduc, varying message rate, 16KB cache, 91% long messages by volume 78
C.3 mdljsp2, varying message rate, 16KB cache, 91% long messages by volume . . . 78
C.4 xlisp, varying message rate, 16KB cache, 91% long messages by volume 78
C.5 barnes, varying message rate, 16KB cache, 91% long messages by volume 79
C.6 fpppp, varying message rate, 16KB cache, 91% long messages by volume 79
C.7 ear, varying message rate, 16KB cache, 91% long messages by volume 79
C.8 pthor, 0.0200 words/clock, varying cache, 91% long messages by volume 80
C.9 doduc, 0.0200 words/clock, varying cache, 91% long messages by volume 80
C.10 mdljsp2, 0.0200 words/clock, varying cache, 91% long messages by volume . . . 80
C.11 xlisp, 0.0200 words/clock, varying cache, 91% long messages by volume 81
C.12 barnes, 0.0200 words/clock, varying cache, 91% long messages by volume 81
C.13 fpppp, 0.0200 words/clock, varying cache, 91% long messages by volume 81
C.14 ear, 0.0200 words/clock, varying cache, 91% long messages by volume 81
C.15 pthor, 0.0200 words/clock, 16KB cache, varying volume of long messages 82
C.16 doduc, 0.0200 words/clock, 16KB cache, varying volume of long messages 82
C.17 mdljsp2, 0.0200 words/clock, 16KB cache, varying volume of long messages . . . 83
C.18 xlisp, 0.0200 words/clock, 16KB cache, varying volume of long messages 83
C.19 barnes, 0.0200 words/clock, 16KB cache, varying volume of long messages . . . 84
C.20 fpppp, 0.0200 words/clock, 16KB cache, varying volume of long messages 84
C.21 ear, 0.0200 words/clock, 16KB cache, varying volume of long messages 85

D.1 Normalized number of misses vs. message rate (memory–network) 86
D.2 Normalized number of misses vs. message rate (cache–network) 87
D.3 Normalized number of “non-sending” misses vs. message rate (memory–network) 87
D.4 Normalized number of “non-sending” misses vs. message rate (cache–network) . . 87

vii

D.5 Normalized number of misses vs. cache size (memory–network) 88
D.6 Normalized number of misses vs. cache size (cache–network) 88
D.7 Absolute number of misses vs. cache size (pthor) 88
D.8 Absolute number of misses vs. cache size (doduc) 89
D.9 Absolute number of misses vs. cache size (mdljsp2) 89
D.10 Absolute number of misses vs. cache size (xlisp) 89
D.11 Absolute number of misses vs. cache size (barnes) 89
D.12 Absolute number of misses vs. cache size (fpppp) 90
D.13 Absolute number of misses vs. cache size (ear) 90
D.14 Normalized number of misses vs. fraction of long messages (memory–network) . . 91
D.15 Normalized number of misses vs. fraction of long messages (cache–network) . . . 91

viii

List of Figures

1.1 Sample memory hierarchy . 3
1.2 Logically connections between the network interface and the memory hierarchy . 4
1.3 Receiving a message into primary memory . 5
1.4 Receiving a message into the cache . 5

2.1 Communication granularity . 9
2.2 CM-5 block diagram . 10
2.3 T9000 block diagram . 11
2.4 AP1000 block diagram . 11
2.5 Alewife block diagram . 12
2.6 CS-2 block diagram . 13
2.7 Paragon block diagram . 14
2.8 EDS block diagram . 15
2.9 Mosaic C block diagram . 16
2.10 J-Machine block diagram . 16

3.1 A trace-based simulation . 20
3.2 CARL code for a 32-bit register . 21
3.3 Cache–network incoming message path . 22
3.4 Cache–network outgoing message path . 22
3.5 Memory–network incoming message path . 23
3.6 Memory–network outgoing message path . 23
3.7 Logical structure of a simulated multicomputer node 24
3.8 Network fringe . 24
3.9 Layout of the 21064-AA’s data cache . 25
3.10 Layout of the 21064-AA’s write buffer . 26

4.1 Uniprocessor cache misses . 32
4.2 Normalized number of misses vs. message rate (pthor) 33
4.3 Normalized number of misses vs. message rate (doduc) 34
4.4 Normalized number of misses vs. message rate (mdljsp2) 34
4.5 Normalized number of misses vs. message rate (xlisp) 35
4.6 Normalized number of misses vs. message rate (barnes) 35
4.7 Normalized number of misses vs. message rate (fpppp) 36
4.8 Normalized number of misses vs. message rate (ear) 36
4.9 Normalized number of misses vs. message rate . 37
4.10 Uniprocessor cache miss rate . 38

ix

4.11 Normalized number of “non-sending” misses vs. message rate (pthor) 39
4.12 Normalized number of “non-sending” misses vs. message rate (doduc) 40
4.13 Normalized number of “non-sending” misses vs. message rate (mdljsp2) 40
4.14 Normalized number of “non-sending” misses vs. message rate (xlisp) 41
4.15 Normalized number of “non-sending” misses vs. message rate (barnes) 41
4.16 Normalized number of “non-sending” misses vs. message rate (fpppp) 42
4.17 Normalized number of “non-sending” misses vs. message rate (ear) 42
4.18 Normalized number of “non-sending” misses vs. message rate 43
4.19 Normalized number of misses vs. cache size (pthor) 44
4.20 Normalized number of misses vs. cache size (doduc) 45
4.21 Normalized number of misses vs. cache size (mdljsp2) 45
4.22 Normalized number of misses vs. cache size (xlisp) 46
4.23 Normalized number of misses vs. cache size (barnes) 46
4.24 Normalized number of misses vs. cache size (fpppp) 47
4.25 Normalized number of misses vs. cache size (ear) 47
4.26 Normalized number of misses vs. cache size . 48
4.27 Absolute misses vs. cache size (uniprocessor) . 49
4.28 Absolute misses vs. cache size (memory–network) 49
4.29 Absolute misses vs. cache size (cache–network) 50
4.30 Normalized number of misses vs. fraction of long messages by volume (pthor) . . 51
4.31 Normalized number of misses vs. fraction of long messages by volume (doduc) . . 52
4.32 Normalized number of misses vs. fraction of long messages by volume (mdljsp2) 52
4.33 Normalized number of misses vs. fraction of long messages by volume (xlisp) . . 53
4.34 Normalized number of misses vs. fraction of long messages by volume (barnes) . 53
4.35 Normalized number of misses vs. fraction of long messages by volume (fpppp) . . 54
4.36 Normalized number of misses vs. fraction of long messages by volume (ear) . . . 54
4.37 Normalized misses vs. fraction of long messages by volume (memory–network) . . 55
4.38 Normalized misses vs. fraction of long messages by volume (cache–network) . . . 56
4.39 Difference of multicomputer send and receive ratios (sorted) 57

x

Chapter 1

Introduction

High-performance computing is crucial to manufacturing, science, defense, and other areas.
Solutions to current problems in these fields rely on accurate models of natural and/or artificial
phenomena to reduce cost, increase safety, and improve quality of life. However, accurate
models require tremendous computing power. Only the highest-performing computers will
be capable of supporting the computational demands of applications as diverse as aerospace
simulations, quantum chromodynamics calculations, and global climate change predictions.
Realizing how important those applications—and therefore, high-performance computing—are
to all sectors, the U.S. government recently formed the Federal High Performance Computing
and Communications Program (HPCC), whose charter includes “extend[ing] U.S. technological
leadership in high performance computing and computer communications” [10].

Traditionally, high-performance computing meant fast uniprocessors—computers with a sin-
gle, powerful processor and a high-speed memory system. However, due to physical limitations,
such as the speed of light, it has become increasingly difficult to produce faster uniprocessors. To
achieve their goal of developing high-performance computers capable of sustaining over a trillion
operations per seconds (teraops), the HPCC promotes scalable, parallel computers [10]. In addi-
tion to being a more promising technology in terms of performance, parallel computers have the
additional advantage of comparatively low cost, as—unlike high-performance uniprocessors—
they are generally built from commodity components.

A parallel computer is composed of multiple computers (nodes) that cooperatively solve
problems by working on separate portions of the computation and communicating status in-
formation and data with other nodes. Each node, like an entire uniprocessor system, contains
a processor and memory. The parallel computers we consider in this thesis are scalable, which
means that aggregate computational power available to an application can be increased by in-
creasing the number of nodes. Parallel computers are generally converging to multiple instruc-
tion/multiple data (MIMD) [18] architectures. Each processor in a MIMD machine operates
independently on a subcomputation and synchronizes with other processors as needed. In this
thesis, we focus on one subcategory of MIMD machines, called multicomputers. Multicomput-
ers are distinguished by their distributed memory and message-passing style of communication.
That is, communication is performed by passing data in the form of a message from one node’s
memory to another’s.

1

1.1 The Problem

One important concern in multicomputer node architectures not shared by uniprocessor archi-
tectures is the relation of communication, computation, and memory performance. Computer
systems generally contain a small amount of fast memory and a large amount of slower memory.
Both communication and computation benefit from using the fast memory. Communication
benefits from fast memory because messages are sent between nodes’ memory. Computation
benefits from fast memory because program data is stored in memory. However, because the
quantity of fast memory is limited, optimizing an architecture for communication performance
(by storing message data in the fast memory) implies that computation performance suffers
because its data is relegated to slower memory. Similarly, optimizing an architecture for com-
putation performance decreases communication performance. In this thesis, we show the impact
of message traffic on memory performance for two architectures and show how that impact varies
across a range of scenarios.

1.1.1 Memory Hierarchies

An ideal memory system would be infinitely large and infinitely fast. But due to physical
limitations, the ideal is unachievable and hence, tradeoffs must be made in system design.
Faster memories are expensive and thus, necessarily small. Slower memories are comparatively
inexpensive, and can therefore be larger. But rather than selecting a single memory size and
speed, system designers construct memory systems out of small amounts of fast memory, and
a large amounts of slow memory. The memory is organized hierarchically, with the smallest,
fastest memory kept closest to the central processing unit (CPU), and the largest, slowest
memory farthest away. The largest, slowest, but least expensive memory—primary memory—
is at the bottom of the memory hierarchy1, with levels of increasingly smaller, faster, but more
expensive, memory—generally organized as a cache—higher up. Cache memories [32] contain
a dynamically-changing subset of lower memories in the hierarchy. When the CPU makes a
request (a LOAD or STORE) to a memory address, the first level of cache memory is searched. If
the data is present in the cache, the cache returns or modifies the data (as appropriate). This
is called a cache hit. If the cache does not contain the address (a cache miss), the memory
request is propagated down the memory hierarchy until the address is found. The goal of a
memory hierarchy is to create the illusion of a memory that is both large and fast. The success
of the illusion depends on the likelihood that data the CPU needs is located in the fast cache
memory.

Figure 1.1 shows a sample memory hierarchy. To put the relative speeds and sizes of each
level in perspective, we show, the memory hierarchy figures of the DEC 4000 AXP series of
workstations. Table 1.1 lists the size of each level of the memory hierarchy, measured in kilobytes
(KB), and the corresponding latency, measured in nanoseconds (ns). Data used in the table is
based on that in [14, 27] (160 megahertz (MHz) DECchip 21064 CPU, maximum memory/cache
sizes, bus latency included). Note that each level in the memory hierarchy is approximately
two orders of magnitude larger than the immediately higher level and one order of magnitude
slower.

1In some systems, the memory hierarchy is extended to secondary and even ternary memory. However, in
this thesis, we will assume that primary memory is the lowest level of the memory hierarchy.

2

CPU

On−chip cache

Off−chip cache

Primary memory
In

cr
ea

si
ng

 s
iz

e D
ecreasing latency

Figure 1.1: Sample memory hierarchy

Component Size (KB) Latency (ns)

On-chip cache 16 6.25

Off-chip cache 4,096 25

Primary memory 2,097,152 275

Table 1.1: Memory hierarchy of the DEC 4000 AXP

1.1.2 Network Interfaces

Multicomputer communication involves transmitting data from one node to another over a
high-speed interconnection network. The network interface provides the gateway between the
memory hierarchy and the network, and logically connects to one or more levels of the memory
hierarchy (Figure 1.2). The CPU is portrayed as a memory–network connection point because
the CPU register file, sometimes considered a “compiler-controlled cache,” forms the top of the
memory hierarchy.

Communication performance is largely a function of memory performance. Communication
performance is measured in terms of latency and bandwidth. Latency is the time it takes for
the first piece of data to arrive at the destination node, and bandwidth is the message volume
transmitted per unit time. Because memory is the source and destination of communicated data,
communication latency can be no lower than memory latency (a few hundred nanoseconds),
and communication bandwidth can be no higher than memory bandwidth (a few hundred
megabytes/second).

1.1.3 The Conflict

Computation performance, like communication performance, relies on rapid access to data.
However, the limited size of the upper levels of the memory hierarchy is insufficient to store
both communication data (i.e. incoming and outgoing messages) and computation data (i.e.
application data structures), let alone either of them in its entirety. Nevertheless, the more
upper-level memory is available to communication or computation, the faster its operations
will execute. Therefore, to make room for message data, other data (such as that in use by

3

CPU

Network
interface

}Possible logical
connection points

On−chip cache

Off−chip cache

Primary memory

Figure 1.2: Logically connections between the network interface and the memory hierarchy

an application) must be displaced from its position in the memory hierarchy to a lower level.
Similarly, when the CPU pulls application data up the memory hierarchy, it pushes other data
(such as that in use by messages) down the memory hierarchy. For one piece of data to become
more readily-accessible, another must become less readily-accessible.

As a result of communication and computation performance being tied to memory per-
formance, the point at which the network interface and memory hierarchy logically connect
is important. Logically connecting the network interface to one of the higher levels of the
memory hierarchy enables lower-latency communication, but displaces program data, making
it less readily-accessible. In contrast, logically connecting the network interface to one of the
lower levels of the memory hierarchy preserves important data in fast memory, but increases
communication latency. The tradeoff is thus that either message data or program data can be
accessed with low latency.

Consider two alternatives: logically connecting the network interface to primary memory or
logically connecting the network interface to the cache (assuming a single cache in this model).
In the former (Figure 1.3), the network interface writes communication data directly to primary
memory. While primary memory latency degrades communication performance, cached data is
not displaced. Furthermore, the CPU can continue accessing the cache while communication
data is written to primary memory, thereby hiding some of the communication latency. In
systems that logically connect the network interface to the cache (Figure 1.4), the CPU actively
reads communication data from the network interface and writes it into the memory hierarchy.
(We are assuming that the network interface cannot directly access the cache, as is generally
the case for on-chip caches.) Because the cache has limited capacity, a previously-cached piece
of data is displaced to make room for it. However, because cache memory is faster than primary
memory, the CPU can access the communication data faster than in the previous scheme.

In practice, the interrelation between communication and computation performance is more
complex than a simple “either-or.” Because a message generally contain data produced by a
computation, and computation generally acts on data received from a message, there is some
degree of data sharing between communication and computation. If a message arriving at a

4

CPU

Cache

Network
interface

Primary memory

Figure 1.3: Receiving a message into primary memory

CPU

Cache

Network
interface

Primary memory

Figure 1.4: Receiving a message into the cache

5

node is quickly incorporated into computation, a cache–network interface is the better design
because of the speed at which computation can integrate the incoming data. In contrast, if an
application cannot promptly use incoming data—either the application is not ready to process
message data, or only a portion of the message can be used immediately—a primary memory–
network interface is the better design because it does not disrupt computation by requiring it
to handle data it does not yet need. In general, the sooner message data is to be shared, the
higher in the memory hierarchy it should be placed.

When the type of data sharing is not known a priori, system designers must decide which is
more important: rapid access to program data or rapid access to message data. To determine
whether network–cache or network–primary memory has superior overall performance, one
must know how much message handling affects memory hierarchy performance in a variety of
scenarios. That is exactly the problem we address in this thesis—quantifying message handling’s
impact on the cache for network–cache and network–primary memory architectures in various
situations and under different system configurations.

1.2 The Approach

We constructed register-transfer-level trace-based simulators to simulate the operation of two
systems that are alike in every way except for the connection point of the network interface and
the memory hierarchy. One simulated system connects2 the network interface and the cache,
and the other connects the network interface and primary memory. In addition, we simulated a
uniprocessor that is identical to the two multicomputers except that it lacks a network interface
and therefore, does not engage in message handling. Using those three simulators, we studied
message handling’s impact on the cache under a variety of message rates, cache sizes, and
message types.

1.3 Related Work

While multiprocessor cache performance has been studied extensively, there have been virtually
no studies of multicomputer cache performance. The primary exception is [33], in which Stunkel
and Fuchs characterize the cache performance of an Intel iPSC/2 hypercube [22]. The iPSC/2
is a multicomputer composed of up to 128 Intel 80386 microprocessors, each equipped with a
64 KB off-chip cache and up to 16 megabytes (MB) of primary memory. The network interface
connects to primary memory.

To perform their analysis, Stunkel and Fuchs performed trace-based simulations of an
iPSC/2 running a set of parallel applications and measured the cache miss rate. Stunkel and
Fuchs varied the cache size and number of processors, and performed their tests both with and
without an operating system.3 They then report the overall cache miss rate—the sum of all
the processors’ cache misses divided by the sum of all the processors’ memory references—for
each scenario.

According to [33], given a constant problem size, the cache miss rate decreases with the
number of processors until the application’s working set fits in the cache, and increases from
there on. In addition, Stunkel and Fuchs found that applications that send and receive many

2In this thesis, “connects” implies a logical connection rather than a physical one.
3The iPSC/2 normally runs the UNIX operating system on every node.

6

short messages observe worse cache performance than applications that send and receive long
messages in bursts with little or no intervening communication. This latter result agrees with
our findings, described later in this thesis.

1.4 Results

Our results indicate that message traffic has a tremendous impact on multicomputer node
performance. Among the things we found are:

• Message traffic greatly increases the number of cache misses observed by a multicomputer
with a memory–network interface and average-sized cache. With a 16KB cache, a multi-
computer that processes one word of message data per 50 clock periods can be expected
to observe up to 20% more cache misses than a similarly-configured uniprocessor.

• Larger caches benefit multicomputer nodes less than uniprocessor nodes. For example,
doubling the cache size from 16KB to 32KB decreases cache misses by 55% for one
application on a uniprocessor but by only 35% on a multicomputer with a cache–network
interface.

• Control and data messages (i.e. short and long messages) affect the cache differently.
For a constant volume of messages, short messages displace more cached data than long
messages for both cache–network and primary memory–network interfaces. In addition,
for some applications, cache–network interfaces displace less cached data than primary
memory–network interfaces when handling short messages.

1.5 Thesis Overview

The remainder of this thesis is organized as follows. In Chapter 2, we describe a number of
current research and commercial network interfaces and compare them to the basic CM-5 and
Paragon designs we use for our simulations. Chapter 3 covers our experimental framework,
introducing our simulators at both a conceptual and detailed level, describing the application
traces we used, and presenting our simulation parameters and dependent variables. The results
of our simulations are presented and analyzed in Chapter 4. There, we show the impact of
message traffic on cache performance for two network interfaces and show how that impact
varies with message type and cache size. In Chapter 5, we discuss our findings qualitatively, ex-
plaining the ramifications of our results on present multicomputers, and forecasting the cache
performance of future multicomputers based on our results and on current trends in system
design. Drawing upon those trends and forecasts, we provide suggestions for future multicom-
puters and applications. In Chapter 6, we summarize our results and provide some conclusions.
Finally, in Chapter 7, we mention topics for future research that expand upon our findings.

7

Chapter 2

Background

A wide variety of parallel machines with a wide variety of network interfaces have been built.
However, they illustrate only two basic choices. Section 2.1 describes systems in which the
network interface connects to the cache, viz. the CM-5, T9000, AP1000, and Alewife. We
note how each system addresses the problems created by that organization: cache pollution
and increased CPU load. Section 2.2 describes systems in which the network interface logically
connects to primary memory. While that organization does not suffer from cache pollution and
increased CPU load from message handling, it introduces a new concern: increased messaging
latency. We note how each of the CS-2, Paragon XP/S, EDS, and Mosaic C attempt to support
fine-grained communication in view of that latency.

2.1 Cache–Network Interface

The advantage of connecting the network interface to the cache is that the speed of message
sending and receiving is not dominated by primary memory latency. Message data can be
accessed after only a (comparatively small) cache latency. Lower-latency communication enables
finer-grained applications.

To illustrate the importance of low-latency communication for fine-grained applications,
consider an application composed of seven tasks of unit time, the middle five of which are
independent. In Figure 2.1(a), the seven tasks are executed sequentially, which takes seven time
steps. In Figure 2.1(b), the first task communicates data to the middle five tasks, which execute
in parallel and then combine their results for the final task to process. Because communication
time is small, the parallel execution finishes faster than the sequential execution, taking only
five time steps. Figure 2.1(c) depicts the seven tasks executing in the same manner as in
Figure 2.1(b), although on a system where message handling incurs a high latency. Because
a proportionally larger amount of time is spent communicating, the parallel execution of the
application takes nine time steps, making it slower even than the sequential execution. Hence,
if an application communicates frequently relative to the amount of intervening computation,
low-latency communication is imperative for good parallel performance.

The disadvantage of logically connecting the network interface to the cache is that message
handling causes cache pollution. When messages are constructed in or received into the cache,
they displace program data previously resident. If the displaced data is no longer needed, then
there is no penalty for message handling. If, however, the displaced data is needed again, the

8

Sequential Low−latency
message handling

High−latency
message handling

Communication

Computation

Key

T
im

e

(a) (b) (c)

Figure 2.1: Communication granularity

CPU must incur a primary memory latency to access it. In the absence of message handling,
it need incur only a cache latency.

2.1.1 Basic Design

The basic model used by systems with cache–network interfaces is that the CPU connects
directly to a cache, and the cache, primary memory, and network interface share a bus (although
the network interface communicates only with the cache). The network interface communicates
only with the CPU, which must initiate the communication. In that sense, the network interface
behaves like primary memory: It passively awaits the CPU’s LOAD and STORE commands, which
it then responds to by returning or accepting data. Two examples of the basic cache–network
interface model are the CM-5 and the T9000.

One of the design goals [29] of the CM-5 was to reap the benefits of a MIMD architec-
ture, while still maintaining compatibility with the CM-5’s single instruction, multiple data
(SIMD) [18] predecessor, the CM-2. Because SIMD architectures communicate frequently, pro-
viding low-latency communication in the CM-5 was crucial for CM-2 compatibility. Therefore,
the CM-5’s network interface was designed to logically connect to the cache, as depicted in
Figure 2.2. The network interface lies between the cache and memory, yet logically connects
only to the cache.

By optimizing for low-latency communication, the CM-5’s network interface supports the
CM-2’s fine-grained SIMD model. However, without access to primary memory, the network
interface is unable to send or receive memory- (but not cache-) resident data directly. That can
be a problem when an application needs to send large quantities of data from memory. In that
situation, memory data must be loaded into the cache prior to transmission, which can cause

9

Network
interface Router

Processor

Cache

Memory

Figure 2.2: CM-5 block diagram

cache pollution. Consider a node that needs to transmit a large array from primary memory.
Loading each element of the array into the cache can displace a significant quantity of other
program data.

An additional drawback of the CM-5’s node architecture is that the CPU is involved in
message transfers. The CPU must explicitly move message data from the cache to the network
interface. Thus, the CPU must postpone computation during message handling.

The T9000 Transputer [28] is designed specifically for fine-grained MIMD parallelism. It
implements a custom-designed CPU, network interface, and cache1 on a single chip, reducing
latency but increasing design complexity.

As Figure 2.3 shows, the processor, cache, and network interface are interconnected via a
crossbar instead of a (slower) bus. The network interface uses a direct memory access (DMA)
controller to transport data between the network and the cache. Unlike the CM-5, the T9000
frees the CPU from message handling. The CPU can continue computing during message
transfers, as long as it does not require data from the cache bank in use by the network
interface. (The cache is divided into four banks.) This increases computational throughput
relative to the CM-5.

2.1.2 Cache- and Memory-Network Interface

A variant on the model described in Section 2.1.1 is to logically connect the network interface to
both the cache and primary memory. The advantage of a dual connection is that long messages
can be transmitted using primary memory to minimize cache pollution, and short messages
can be transmitted using the cache to minimize latency. Two examples of architectures using
a cache- and memory-network interface are the AP1000 and Alewife.

The AP1000 computer shares with the CM-5 the goal of low-latency communication [24].
It, too, logically connects the network interface and the cache, but in a substantially different
manner from the CM-5 (Figure 2.4). Primarily, the AP1000 logically connects the network
interface to both the cache and primary memory. This organization alleviates cache pollution

1The T9000 can be software-configured to treat half or all of its on-chip cache as primary memory.

10

Processor

Network
interfaceCache

Memory Router

Crossbar

Figure 2.3: T9000 block diagram

for large, primary memory transfers, yet does not preclude low-latency communication using
short, cache-based transfers. The application can choose on a per-message basis an appropriate
level of the memory hierarchy to use for communication.

Memory

Router

Network
interface
and DMA

Processor

Cache

Figure 2.4: AP1000 block diagram

While the CM-5’s CPU must transport data between the network interface and the cache,
the AP1000’s network interface can access the cache directly. That architectural design ad-
dresses the problem of occupying the CPU for message sends by enabling the CPU to continue
computing while the network interface transports data between the cache and the network.
However, it introduces a new architectural concern: for the network interface to be able to ac-
cess data directly from the cache, either the cache must be off-chip, or the microprocessor must
allow external devices access to the on-chip cache. The former is increasingly difficult given
increasing CPU clock rates, and the latter requires functionality not supported until recently

11

by current-day microprocessors (in the form of cache-coherence protocols, which can provide
limited forms of access to the on-chip cache).

RouterProcessor

Cache Memory

Network
interface
and DMA

Figure 2.5: Alewife block diagram

The Alewife machine [25] shares the AP1000’s high-level architectural design. Both systems
give the network interface access to both the cache and primary memory. However, as Figure 2.5
indicates, the Alewife’s network interface is additionally directly accessible by the CPU. There
are thus three ways to send messages in the Alewife:

1. DMA transfers, from both the cache and primary memory. (That is, data are sent from
the highest level of the memory hierarchy at which they are located.)

2. Writing directly to network interface queues

3. Cache-coherent memory operations

The last of those provides particularly low-latency communication. In the Alewife, nodes
can cache data from remote nodes’ primary memories, and if the data is changed, all caches
containing that data are notified. Hence, a single STORE instruction automatically sends mes-
sages to each node that has the corresponding data cached. Similarly, a single LOAD instruction
automatically sends a message to the corresponding data’s “home” node, which sends back a
message containing the data. In contrast, message passing on the other systems described in
this section requires message characteristics (i.e. destination node, number of bytes to trans-
fer, and starting address) to be communicated to the network interface before the message is
launched. The Alewife’s ability to perform implicit message passing reduces software overhead
and enables finer-grained communication than would otherwise be supported. The drawback of
implicit message passing is that messages may be sent even if doing so is unnecessary. That is,
as long as data is cached in multiple nodes, any modification to that data will result in message
sends, even if the data is needed only by the node that modified it. This causes unwanted
message traffic, which detracts from the network bandwidth shared by all nodes.

2.2 Memory-Network Interface

To reduce cache pollution, systems can logically connect the network interface to primary
memory. In this type of system, the network interface is equipped with a DMA controller,
which the CPU programs to send and receive data. Once the CPU sets up the DMA controller,
the CPU can continue computing, even performing cache operations. Overlapping computation

12

and communication allows applications to make progress during message handling, as long as
they do not require access to incoming message data.

The disadvantage of logically connecting the network interface to primary memory is an
increase in messaging latency. Because primary memory must be accessed for all message
transmissions, communication latency can be no less than primary memory latency, which
can be fairly large—on the order of 50–70ns, incurred for each memory access. As a result,
applications running on systems that logically connect the network interface exclusively to
primary memory must be an order of magnitude more coarse-grained to observe an advantage
from parallelism on a node with a primary memory–network interface than on one with a
cache–network interface.

2.2.1 Basic Design

The basic model used by systems with memory–network interfaces is similar in structure to that
used by systems with cache–network interfaces. In both, the CPU connects directly to a cache,
and the cache, primary memory, and network interface share a bus. The difference is that the
network interface contains a DMA controller and can therefore access memory autonomously
from the CPU. In that sense, the network interface behaves like a CPU itself: It actively
sends LOAD and STORE requests to primary memory. An example of the basic memory–network
interface model is the CS-2.

The CS-2 [21] logically connects the network interface to primary memory in an extremely
straightforward manner. As Figure 2.6 indicates, the network interface and DMA controller
lie on the bus connecting the processor and memory, and the router connects to the network
interface.

Router
Network
interface
and DMA

Memory

Processor
and cache

Figure 2.6: CS-2 block diagram

Although the basic memory–network interface is intended for coarse-grained parallelism (due
to the high communication latency incurred by the need to access primary memory), the CS-
2’s network interface deviates from the basic design by implementing a few operation-specific
fine-grained features. For example, it supports atomic swap, increment, and test-and-store
synchronization primitives on remote synchronization variables, and it can poll semaphores
located on a remote node. (That is, it determines if a local and remote variable are =, 6=, <, >

,≤, or ≥.) While those operations are certainly fine-grained—they represent small amounts of
computation between communications—shifting the responsibility for executing them from the
CPU to the network interface enables the remote node to compute while its network interface
handles the fine-grained operations. Thus, rather than reducing latency, the CS-2 masks it by
overlapping fine-grained operations with coarse-grained computation.

13

2.2.2 Messaging Coprocessors

Logically connecting the network interface to primary memory does not imply that the cache
is immune to message handling effects. Operating system or run-time system involvement in
message construction, packetization, and protocol processing affects the cache. One way to
alleviate this problem is to add a messaging processor. Two examples of systems that follow
this approach are the Paragon XP/S and the EDS.

The Paragon XP/S [23] system tries to minimize cache pollution by adding a second pro-
cessor (with a separate on-chip cache) specifically to handle messaging operations (Figure 2.7).
Thus, the “compute” processor’s cache is largely unaffected by communication; only the “mes-
saging” processor’s cache suffers.

Memory RouterDMA
controller

Processor
and cache

Processor
and cache

Processor
and cache

Processor
and cache

Figure 2.7: Paragon block diagram

While the Paragon reduces cache misses by adding an additional processor with on-chip
cache, an alternative way to reduce cache misses is merely to add an off-chip cache. However,
adding a second processor additionally reduces costly context switches from the user’s process
to the operating/run-time system and back for each communication. With two processors, the
compute processor can stay in user mode and the messaging processor can stay in the part
of the operating/run-time system that handles messages, and neither needs to context switch
to communicate. The disadvantage of dedicating one processor to computation and one to
communication is that computation-intensive tasks are limited to using half of the available
CPU power.

The European Declarative System (EDS), a multicomputer produced by a consortium of
Bull, ECRC, ICL, and Siemens [34], is architecturally similar to the Paragon, although it
addresses the dedicated-processor issue. The main differences between the EDS and the Paragon
are:

1. The EDS does not dedicate its messaging processor to messaging; it is also allowed to
compute.

2. The EDS provides a lower-latency connection from the messaging processor to the network
interface.

The advantage of allowing the messaging processor to compute is that it enables up to
twice the computational throughput of a system (like the Paragon) that restricts the messaging
processor to message handling. The disadvantage of performing computation on the messaging

14

processor is that doing so forfeits the benefits of a reduced number of context switches and a
lower cache miss rate for program data in the presence of message handling.

While the Paragon distinguishes the compute and messaging processors through software,
the EDS distinguishes them through hardware. Only the EDS’ messaging processor has low-
latency access to the network interface. The network interface is connected between the CPU
and the off-chip cache (Figure 2.8) and can therefore accept commands directly from (and return
status information directly to) the CPU. While this feature does not reduce communication
latency (which is still dominated by primary memory latency), it does reduce the amount of
time the CPU is involved in message transfers.

Memory

Processor

Cache

Router
Network
interface
and DMA

Processor

Cache

Control

Figure 2.8: EDS block diagram

2.2.3 Fine-Grained Systems

Memory–network interfaces do not preclude fine-grained communication. However, they do
require different implementations from those described in Sections 2.2.1–2.2.2. Specifically,
memory–network interfaces require a higher level of system integration to prevent primary
memory from becoming a communication bottleneck. The Mosaic C is an example of a fine-
grained multicomputer.

Like the CS-2, Paragon, and EDS, the Mosaic C [30] logically connects the network interface
to primary memory. However, unlike those other machines, the Mosaic C is designed for fine-
grained parallel applications. Fine-grained applications require low-latency communication,
making the cache in the Mosaic C’s block diagram (Figure 2.9) conspicuously absent. The
Mosaic C does not contain a cache because primary memory is not a bottleneck for the node’s
comparatively slow CPU. While the slow CPU speed implies multiple Mosaic C nodes must
be used to achieve the same throughput as a single i860/XP or SPARC microprocessor, the
Mosaic C is intended to be used for very fine-grained applications running on a large number
of nodes. In that scenario, the ability to exploit parallelism is more important to performance
than single-node computing power.

15

Router
Network
interface
and DMA

Processor

Memory

Figure 2.9: Mosaic C block diagram

The Mosaic C node is only a single chip. The advantage of a single-chip design is that
it reduces inter-component latency by reducing the frequency data must go off-chip. In the
Mosaic C, only interprocessor communication must cross chip boundaries—not cache/memory
operations, as is the case for the other systems described in this section. Two disadvantages
of single-chip designs are limited chip area and high design cost. Because chip area is limited,
fitting the CPU, network interface, router, and primary memory on a single chip implies that
each component is generally less powerful than it would have been, given the entire chip.

Like the Mosaic C, the J-Machine [12] is a single-chip fine-grained machine. What distin-
guishes the J-Machine from a memory hierarchy/network standpoint is that while messages can
be sent and received using primary memory, the can additionally be sent directly from CPU
registers (Figure 2.10). Message reception is handled without any CPU involvement; arriving
messages are automatically placed in a circular queue, where they are read by the CPU. The
motivation for this structure is that in fine-grained applications, data intended for transmission
is likely to be in the topmost levels of the memory hierarchy, and should therefore be sent
from there. Arriving messages, however, initially go to lower levels of the memory hierarchy
so as not to disturb the computation in progress. Although their architectures are different in
regard to their interface between the network and the memory hierarchy, the J-Machine and
the Mosaic C share their advantages (low-latency communication) and disadvantages (limited
chip area).

RouterMemory
Network
interface
and DMA

Processor

Figure 2.10: J-Machine block diagram

16

2.3 Summary

In this chapter, we examined a number of existing multicomputer nodes, paying particular
attention to the way each interfaces the network and the memory hierarchy. While these
machines exhibit a variety of features, each can be placed in one of two main categories: cache–
network interfaces and memory–network interfaces. Common to systems employing the former
architecture is the CPU’s ability to explicitly manage data movement between the network
interface and the cache. And common to systems employing the latter architecture is the
CPU’s dissociation with communication; the CPU merely sets up a DMA transfer and lets the
DMA controller take over.

There are benefits to both schemes. The basic cache–network interface supports fast access
to message data, but requires design modifications to minimize cache pollution produced by
message data that is not immediately usable. For example, the AP1000 and Alewife address
that problem by supporting DMA-based message transfers in addition to CPU-based ones.
The basic primary memory–network interface decouples communication from computation but
requires design modifications to support fine-grained communication. For example, the CS-2
provides special support for specific synchronization operations that run with low overhead. In
this thesis, we examine the two basic models in an effort to quantify how well each performs in
a variety of circumstances.

17

Chapter 3

Experimental Framework

System designers need to know what memory hierarchy–network interface has superior perfor-
mance in what situations in order to optimize architectures for their particular design goals.
Furthermore, application writers could use information about each node architecture to op-
timize their applications and to better explain performance data. For example, if logically
connecting the network interface to the cache results in a vastly increased number of cache
misses, that could explain worse-than-expected application performance.

Unfortunately, analytic modelling of the memory–network interface is infeasible because of
the complexity of memory and network access patterns. In analytic models, complexity widens
the inherent gap between insight and accuracy. Simple models of memory and network access
patterns are not accurate enough, while complex models may be more precise, yet are difficult
to interpret. The complexity of the interaction between communication and computation elim-
inates the middle ground (models that are moderately accurate and provide moderate insight).

At the other extreme from analytic modelling is comparing actual hardware implementations
of the different interfaces between the memory hierarchy and the network. That is, one could
build two systems—one that logically connects the network interface to the cache and one that
logically connects the network interface to primary memory—and compare execution times
on the actual machines. The problem with that approach is the high cost and design time
involved in producing and testing new systems. Comparing existing systems that use different
network interfaces is not a solution because there are far too many variables, including different
processors, clock speeds, network topologies, chip technologies, and run-time systems. It is
therefore difficult to make a fair comparison.

We pursue an experimental approach to evaluating logical connection points of the network
interface to the memory hierarchy. The approach we use in this thesis lies between analytic
models and performance measurements of hardware implementations in terms of insight and
accuracy. We use simulators to compare systems that are identical except for the way they
handle interprocessor communication. A simulator is a program that models the behavior
of a system. That is, given the same inputs and simulation parameters, a simulator and a
hardware implementation should ideally produce identical results. For the purpose of comparing
architectures, simulators have the following advantages over analytic models and performance
measurements of hardware implementations:

• Systems can be compared fairly and accurately.

• Results are repeatable.

18

• Parameters can be precisely controlled.

The simulators we created for this study are specified with a fine degree of detail and exhibit
the features listed above.

In this chapter, we describe the conceptual model behind our simulations in Section 3.1,
followed by a structural description in Section 3.2. In Section 3.3, we describe the traced
applications. And, finally, we describe the simulation parameters and dependent variables in
Sections 3.4 and 3.5, respectively.

3.1 Conceptual Model

To evaluate network interface performance, we simulated three machines:

• A multicomputer with a cache–network interface,

• A multicomputer with a primary memory–network interface, and

• A uniprocessor, which has no network component.

The uniprocessor serves as a performance baseline in our study.
Figure 3.1 illustrates our simulation model.1 Our simulators are trace-based, which means

they take as input the memory references made by an application. A trace generator monitors
the application’s execution and records the addresses referred to in all dynamically-issued LOAD

and STORE instructions. (Note that this process is independent of the cache.) Because this study
focuses on the memory hierarchy, only memory instructions are traced. The address trace and
a set of simulation parameters are then used as input to a machine simulator. The simulator
then passes each address through the memory hierarchy as if it were an actual machine that
had issued a LOAD or STORE instruction.

3.2 Simulator

3.2.1 Overview

Because the goal is to compare node architectures, not specific machines, we separated architec-
ture and implementation. To do so, we constructed three simulators (cache–network, primary
memory–network, and uniprocessor) that are identical except for the manner in which they in-
terface the network to the memory hierarchy. Nodes are simulated at the register-transfer level,
which means that we modelled the functionality of the node’s components without modelling
their exact implementation.

3.2.2 Simulation Tools

The simulators were written using an event-driven simulation engine called Parsim [4] and a
simulation language called CARL [3]. CARL—Computer Architecture Research Language—is
a C-like language2 augmented with support for the Parsim simulation model.

1
Definition: simulation ≡ simulator + inputs

2In fact, the CARL compiler generates C code with function calls to the Parsim library.

19

Trace
generator

Application

Simulator

Results

Trace data Parameters

Key

Data flow

Compute
module

Figure 3.1: A trace-based simulation

The simulation model Parsim uses is that of a set of interconnected functional modules,
or components. Each component defines some number of input and output wires (“nets”) and
contains internal state. Nets are typed and can contain:

• A data value of type char, short, long, float, or double,

• High impedance,

• Unknown, or

• Error

In addition, there is a special valueless net type called clock, which exists to respond to
clock events (described below). Components can (and often do) contain other modules as
subcomponents.

Changes in net contents in Parsim are considered events and occur at a specific time (mea-
sured in ticks, an arbitrary unit of time) on a global clock. Parsim’s main loop is thus:

while the event queue is not empty do

Skip ahead to the earliest time for which an event has been posted.
Concurrently perform all events scheduled at that time.

end

20

COMPTYPE Register32
INPUTS

clock clk : assign value; /* Invoke assign value on clock event */
long input; /* 32-bit input to register */

OUTPUTS

long output; /* 32-bit output of register */
ACTION assign value

output = input after 5; /* Output <-- input after 5 Parsim ticks */
enable up clk; /* Activate clk on next up clock edge */

INIT

output = 0 after 0; /* Initialize output to zero immediately */
enable up clk; /* clk is activated on first up clock edge */

BEGIN

END

Figure 3.2: CARL code for a 32-bit register

When one of a component’s inputs changes, the module is notified. It then performs some
function (an action), which optionally posts “change output net” events for some future time.

An example of CARL code—a module describing a 32-bit register with a propagation de-
lay of 5 ticks—is shown in Figure 3.2. The Register32 component takes two inputs (a long

and a clock) and produces one output (a long). When the “clock up edge” event is posted
(automatically, by the Parsim engine), clk responds by invoking the assign value action.
assign value, in turn, posts an event to assign the input input net to the output output net
after a delay of 5 ticks on Parsim’s clock and specifies it wants to be invoked again on the next
“clock up edge” event. Note that our simulators’ components are significantly more complex
than what is shown in Figure 3.2 and tend not to be composed of simpler components (such as
32-bit registers). This is partly for maintainability, but mostly because Parsim is more efficient
when simulating fewer components.

3.2.3 Simulation Structure

In our simulators, the processor continuously issues memory read and write requests, pausing
occasionally to send a message from the memory hierarchy to the network. In addition, a
message will periodically arrive at the node from the network, at which point the network
interface interrupts the processor to notify it of the message. In the cache–network simulator,
the processor then reads the data from the network interface’s message queues and writes it
to memory, while in the primary memory–network simulator, the processor sets up registers in
the direct memory access (DMA) controller, which then copies the message directly to primary
memory. The average incoming and outgoing message rates (quantity of data per unit time)
are equal and specifiable.

Figure 3.3 shows the path that incoming messages take on the cache–network simulator.
First, messages enter the network interface from the interconnection network (1). The pro-

21

cessor then reads the data from the network interface into registers3 using ordinary memory
read instructions (2). The CPU writes the data into memory (via a write buffer not pictured

in Figure 3.3) in preparation for the user’s code to access it (3). And, finally, the user’s code

reads the data into registers as it would any other data (4).

Processor

Cache Network
interface

Primary
memory

12
3

4

Figure 3.3: Cache–network incoming message path

Sending a message from CPU registers to the network (Figure 3.4) is the reverse process.
The user’s code writes the message into a buffer (1). (The gray lines in the figure represent
the case where some or all of the data is displaced from the cache into memory.) Then, the
CPU reads the message from the buffer (2) and sends the data to the network interface (3),

which forwards it into the network (4).

Processor

Cache Network
interface

Primary
memory

1 2
3 4

Figure 3.4: Cache–network outgoing message path

The primary memory–network simulator takes a different approach to moving data to and
from the network. Message reception is shown in Figure 3.5. After a message enters the
network interface (1), it is written to primary memory (2). When the user’s program reads
the received data into registers, it will miss in the cache and have to load the data from primary
memory (3 & 4).

As on the cache–network simulator, sending a message on the memory–network system
(Figure 3.6) is the reverse of receiving one. The message must first be written to primary mem-
ory (1). From there, the message is sent to the network interface (2) and the network (3).

3But not into the cache; the addresses mapped to the network interface are never cached

22

Processor

Cache

Network
interface

Primary
memory

12
3

4

Figure 3.5: Memory–network incoming message path

Processor

Cache

Network
interface

Primary
memory

1

2 3

Figure 3.6: Memory–network outgoing message path

The logical hardware structure of all three versions of the simulator is shown in Figure 3.7.
The CPU, cache, write buffer, and bus are based specifically on the DECchip 21064-AA imple-
mentation [14] of the Alpha architecture [13]. In addition to the modules shown in Figure 3.7,
we simulate a network fringe (Figure 3.8). The network fringe embodies the actions of the re-
mainder of the multicomputer (everything external to the node). Specifically, it sends messages
to the network interface at a specified constant rate and accepts any messages sent by the node.

The simulators accurately model component and system functionality. But because all
simulation-based research must make tradeoffs between accuracy and control and between ac-
curacy and real-time performance, we made the following simplifications:

• Non-memory instructions execute in zero time.

• There is no operating system or run-time system.

• The surrounding parallel machine is modelled as a network fringe, which accepts and
occasionally injects messages.

Those simplifications are reasonable because:

• Non-memory instructions have little effect in a study concerned exclusively with memory
hierarchy performance.

23

M NIDMA

Bus

CPU

C WB

BIU

C
hi

p
bo

un
da

ry

Network

(Memory−network
architecture only)

CPU = Central Processing Unit
C = Cache
WB = Write Buffer
BIU = Bus Interface Unit
Bus = Bus
M = Memory
DMA = Direct Memory Access controller
NI = Network Interface

Figure 3.7: Logical structure of a simulated multicomputer node

Node Node Node Node

Interconnection network

Key

implicit simulation
(network fringe)

explicit simulation

Figure 3.8: Network fringe

24

• Omitting operating system effects removes nondeterminism from cache performance and
makes results consistent across runs.

• Surrounding a single node with a network fringe focuses the study on the effect of message
handling by providing the flexibility to fine-tune the message rate and message length.

3.2.4 Simulation Structure

The CPU module simulates a 64-bit CPU. The translation lookaside buffer (TLB) and instruc-
tion cache hit rate is 100%.4 The CPU module repeatedly performs the following operations:

1. Dequeuing a memory reference from the trace file, propagating it through the memory
hierarchy

2. Responding to interrupts (incoming messages) by moving a message from the network to
the memory hierarchy

3. Periodically sending a message from the memory hierarchy to the network

Note that only memory instructions are simulated; other instructions are ignored. Furthermore,
the memory locations selected for operations 2 and 3 are uniformly distributed.

The cache module represents an on-chip physically-addressed word-addressable direct-mapped
data cache modelled after the 21064-AA’s (Figure 3.9). The cache uses a read-allocate, write-no-
allocate scheme for misses. Memory locations greater than a specified address are uncacheable
and therefore are guaranteed to miss in the cache. The cache module performs the operations
listed in Table 3.1.

Valid Tag Data

}
(21 bits)

256
lines

.

.

.

.

.

.

.

.

.

(4 words 8 bytes/word 8 bits/byte)(1 bit)

Figure 3.9: Layout of the 21064-AA’s data cache

The write buffer is flushed on a read miss. This is necessary to ensure that the value read
is up to date. While it would be possible for an implementation to permit the cache to read
data directly from the write buffer, for simplicity, the 21064-AA does not.

The bit widths of the tag, index, and offset fields vary with cache size. Larger cache sizes
increase the number of index bits and decrease the number of tag bits (offset is fixed at 2 bits),
but maintain the equations:

tag + index + offset = 31

4Like many current CPUs, our CPU module uses separate instruction and data caches.

25

Hit Miss
Read Send a data word from

the cache to the CPU.
Fetch a cache line from
memory.

Write Modify a data word in
the cache.

Do nothing.

Table 3.1: Cache module operations

and

2index lines ×
2offset words

1 line
×

64 bits

1 word
×

1 byte

8 bits
×

1 MB

1024 bytes
=

cache
size (KB)

Like the cache module, the write buffer module is modelled after the 21064-AA’s version
(Figure 3.10). The write buffer module is implemented as a four-line-deep queue of cache lines.
A mask bit corresponds to each word in the write buffer and specifies whether the word is valid
(modified) or invalid (unmodified). Multiple writes to a location are merged in the write buffer.
(See [14] for further details.)

Data

(4 words 8 bytes/word 8 bits/byte)

Tag

(29 bits)

Mask

(4 bits)

Figure 3.10: Layout of the 21064-AA’s write buffer

The bus module models a non-pipelined bus with 128 data and 32 address lines, similar to
the 21064-AA’s. The bus interface module arbitrates fairly between the cache and the write
buffer for control of the bus. It passes requests onto the bus, and—for a read request—returns
the data read to the cache. Note that because the bus is 128 data bits wide but a cache/write
buffer line is 256 bits wide (4 words × 64 bits/word), it takes two bus cycles to transmit a line.

The memory and memory controller modules sink write requests and return arbitrary data
for read requests.

The network interface transmits messages between the bus and the router (really the network
fringe). It accepts commands from the CPU by providing memory-mapped message queues
and registers. When sending messages to the router on the cache–network simulator’s network
interface module, the first word written to the network interface’s registers must contain the
destination node, and the second word must contain the number of data words to follow. When
receiving messages from the router, the network interface interrupts the CPU to alert it of
message arrival. It then reads data from the router until its message queue is full, at which
point it tells the router to stop sending. The CPU reads data out of the message queue. The
network interface module in the primary memory–network simulator contains a DMA controller.
It accepts commands from the CPU to send data from a given memory location to the router
and to copy data from the message queue to memory.

26

The network fringe module sinks messages sent to it and periodically sends messages to the
network interface on up to four physical channels. It models applications’ communication pat-
terns using a Poisson distribution and maintains a specified average message rate. Pseudocode
for all the modules described in this section is given in Appendix A.

3.3 Trace Data

No single application is representative of the widely-varying memory access patterns different
applications use. Therefore, we use memory traces from several different applications. We
selected application traces based on the following criteria:

• scientific nature

• programming language

• locality

• size

The applications are taken from well-known benchmark suites (SPEC [15, 16] and SPLASH [31]).
They are written in different languages (C and Fortran). They exhibit a range of localities.
And they each make enough memory references to provide meaningful data, but not so many
as to take an inordinate amount of time to simulate. We use the same trace files for both the
uniprocessor and multicomputer simulators—to do otherwise would confuse effects caused by a
node architecture and artifacts of an application’s implementation. Trace data was generated
using QPT [2, 26].

Information about the applications is given in Table 3.2. The column labelled “Memory
references” represents the number of LOADs and STOREs issued dynamically. “Working set size”
was calculated by:

1. Running the memory traces through dineroIII5 using various-sized fully-associative caches
with LRU replacement

2. Plotting the miss rate against the cache size

3. Taking the knee in each curve as the corresponding application’s working set size.

Descriptions of the traced applications [9, 15, 31] follow:

barnes barnes uses Barnes-Hut’s hierarchical N -body algorithm to model point-
masses exerting gravitational forces on each other in three dimensions.
The algorithm specifies that clusters of distant point-masses are treated as
a single point-mass, which significantly reduces the amount of necessary
computation. We specified a single-processor run and used the SPLASH
distribution’s input parameters (most notably, 128 point-masses simulated
for 11 time steps).

5Available from ftp://ftp.cs.wisc.edu/markhill/Misc/dineroIII.3.4.tar

27

Benchmark Memory Working
Application suite Language references set size

barnes

(“Barnes-Hut”)
SPLASH C 128,299,383 32KB

doduc CFP92 Fortran 113,957,528 64KB

ear CFP92 C 256,352,000 8KB

fpppp CFP92 Fortran 294,101,082 16KB

mdljsp2 CFP92 Fortran 64,567,619 128KB

pthor SPLASH C 58,133,474 64KB

xlisp

(“Li”)
CINT92 C 63,666,825 64KB

Table 3.2: Application traces

doduc doduc uses Monte Carlo techniques to simulate the time evolution of a
thermohydraulical modelization of a nuclear reactor’s component. It is
intended to be typical of ECAD and high-energy physics applications. We
used the “small” input set.

ear ear models the propagation of sound in the human cochlea. It inputs
a Macintosh MacRecorder sound file sampled at 22 kilohertz (kHz) and
outputs a picture called a cochleagram, which shows the firing rate of the
inner hair cells in the cochlea in response to the sound in the sound file.
We used the “short” input set.

fpppp The two electron integral derivative is a style of computation used by the
GaussianXX series of quantum chemistry programs. fpppp solves the two
electron integral derivative for some input number of atoms. We traced a
5-atom run.

mdljsp2 Molecular dynamics programs are used to test theories of interatomic po-
tential, and mdljsp2 specifically evaluates the validity of the Lennard-
Jones potential. It simulates a number of atoms (500) interacting in an
idealized Lennard-Jones potential and uses statistical mechanics to calcu-
late position, velocity, energy, and pressure to track each atom individually.
The results of simulation could then be compared to experimental results to
establish the accuracy of the potential. Like fpppp, mdljsp2 is intended to
be representative of quantum chemistry applications. We used the “short”
input set.

pthor Given the description of a digital logic circuit and its input, pthor sim-
ulates the operation of that circuit using a variant of the Chandy-Misra
distributed-time algorithm [5]. As an event-driven simulator, pthor has
much in common with Parsim (Section 3.2.2); both simulate arbitrarily
complex functional blocks interconnected by wires. But while Parsim’s
clock is global, pthor’s is distributed (an aggressive optimization). That

28

is, the various functional blocks do not generally observe the same simu-
lated time. We simulated the risc circuit from the SPLASH distribution.

xlisp xlisp is a small LISP interpreter. When used in SPEC, the interpreter’s
input is an implementation of the N -queens problem (Find all arrange-
ments of N queens on an N×N chessboard such that no queen can take
any other queen) based on that in [36, pp. 183, 367–368]. We specified
seven queens.

3.4 Simulation Parameters

Variable Description Values
Node Manner in which message traffic is handled “cache”
architecture “memory”

“uniprocessor”
Message rate Number of words sent and received per processor clock 0.0010

0.0020
0.0100

0.0200
0.0400
0.0600
0.0800
0.1000

Cache size Size of cache in bytes 8KB

16KB
32KB
64KB

Long message Percentage of messages (in number and volume) considered # Vol.
percentage “long” (“long”≡128 words, “short”≡4 words) 0% 0%

1% 24%
2% 40%
3% 50%
4% 57%

10% 78%
20% 89%

25% 91%
50% 97%
75% 99%

100% 100%

Table 3.3: Simulation parameters; defaults are boxed

Table 3.3 lists the four simulation parameters we varied in each experiment. Entries marked
as “default” were used except where otherwise noted. The following sections detail the simula-
tion parameters and the range of values.

29

3.4.1 Node Architecture

We ran all our experiments on a cache–network, primary memory–network, and uniprocessor
simulator, as described previously in this chapter.

3.4.2 Message Rate

In order to examine the relationship between message traffic and the cache miss rate, we varied
the rate at which message data are sent between the processor and network. In this thesis,
“message rate” refers to the average number of incoming+outgoing words per processor clock.
Messages are introduced with a Poisson distribution. That is, the time intervals between
messages are uniformly distributed while maintaining a given message rate.

Data derived from [11] (Appendix B) show that for the machines and applications examined
in that paper, the message rate varies from 0.00004 to 0.00674 64-bit words per clock, with
a mean of 0.00114. However, those numbers include the time spent executing non-memory
instructions, while our simulations execute exclusively memory instructions. In other words,
the numbers calculated from [11] are unrealistically low for a memory-only study. Hence, we
adjusted our range of message rates upward. The message rates used emphasize “interesting”
regions of the data—where the curves are not flat—and were selected based on preliminary
results.

Preliminary results also show that there is a maximum message rate the two memory-
network interfaces are capable of sustaining. At message rates upwards of approximately 0.1000
words/clock, the simulated cache–network and—to a lesser extent—memory–network systems
spend so much time handling messages, they can make no other progress. This provides a
practical lower bound on current node architectures communication granularity. Applications
that attempt to transmit more frequently than 1 word for every 10 clocks spent in the memory
hierarchy (very roughly, 1 word per 26 CPU instructions6) are likely to spend an inordinate
amount of time waiting on message-handling routines and the cache refills they cause.

3.4.3 Cache Size

We experimented with a variety of cache sizes in order to forecast performance for future mi-
croprocessors. We simulated an 8KB cache because the 21064-AA—on which most of the com-
ponents in our simulated microprocessor are based—uses an 8KB cache. But because modern
microprocessors have ever larger primary data caches—16KB has already become common—we
also simulated 16KB, 32KB, and 64KB caches. We did not simulate a second-level cache.

3.4.4 Long Message Percentage

We experimented with both long and short messages to determine the effect of message length
on the cache miss rate. Because they are allocated in contiguous memory locations, long
messages give near-perfect spatial locality. In contrast, sequences of short messages generally
do not. Because of its spatial locality, a single long message should displace fewer cache lines
than an equivalent volume of short messages, and is therefore expected to be less harmful to
cache performance.

6Based on data in [14, 19] and assuming a split 32 KB cache and an average execution time of one cycle per
instruction (CPI) for non-memory instructions

30

To quantify the impact of short and long messages, we simulated different mixes of two
message lengths (short and long). As with message rate, the specific long message percentages
we chose emphasize “interesting” regions of data and were selected based on preliminary results.

3.5 Dependent Variables

Cache misses is the dependent variable used in all of the graphs in Chapter 4. Most of those
graphs normalize the number of cache misses to that observed on the uniprocessor simulation.
Where appropriate, absolute misses are also used. Normalized numbers represent how many
times slower an application can be expected to run in the presence of message traffic.

For the purposes of this study, cache misses is a superior metric both to execution time and
cache miss rate. Execution time is technology-dependent, tying findings to specific choices of
component speeds. Cache miss rate, while commonly used in cache studies, is inappropriate for
this study because the number of memory references is variable; message handling introduces
additional memory references. Cache misses, unlike miss rate, does not depend on the total
number of memory references and therefore provides better intuition about the data.

In Chapter 4, cache read misses that access primary memory are considered “misses,” and
all other cacheable memory operations are considered “hits.” Most notably, cache write misses
are considered hits because the write buffer and write no-allocate cache hide memory latency,
thereby making write miss response time approximately equal to that of a write hit. Un-
cacheable operations (reads and writes to memory-mapped I/O locations) are deemed I/O and
are therefore considered neither hits not misses. Note that references made to primary memory
as a result of network traffic (viz. storing incoming messages to memory) are considered regular
memory operations.

3.6 Component Speeds

For our experiments, we assigned the following delays—which we believe are reasonable for
a 200MHz DEC Alpha-based system (5 ns cycle time)—to the components described in Sec-
tion 3.2:

cache access 1 CPU cycle
write buffer access 1 CPU cycle
bus cycle 2 CPU cycles
memory access 10 CPU cycles
network cycle 1

2
CPU cycle

router in→out latency . . . 2 CPU cycles

All other components have a latency of 1 cycle on their interfacing component’s clock. Note
that write buffer accesses are performed in parallel with cache accesses.

31

Chapter 4

Simulation Results and Analysis

4.1 Base Misses

We measure the impact of message traffic on the cache by comparing multicomputer and unipro-
cessor cache misses. Figure 4.1 plots the uniprocessor misses for each application. The graphs
in Sections 4.2–4.4 are normalized to the misses shown in Figure 4.1 and therefore represent the
increase in the number of multicomputer cache misses compared to the corresponding unipro-
cessor simulation. Note that uniprocessor simulations will always observe a lesser number of
misses than multicomputer simulations because they perform an application’s memory refer-
ences uninterrupted by miss-causing message traffic.

Application

C
ac

h
e

m
is

se
s

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

pthor doduc mdljsp2 xlisp barnes fpppp ear

Figure 4.1: Uniprocessor cache misses

32

4.2 Misses versus Message Rate

The first experiment shows how sensitive the cache is to the volume of message traffic per unit
time. The average message rate was varied from 0.0010–0.0800 words sent/received per proces-
sor clock. Figures 4.2–4.8 show the cache–network and memory–network systems’ increase in
misses for each application, normalized to the number of misses observed on the uniprocessor
system. Figure 4.9 repeats that data on a single three-dimensional graph. Note that one of the
abscissas is on a logarithmic scale.

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1
|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� � �
�

�

�

�

�

� � � � � � �
�

|
0.001

|
0.010

|
0.100

|0

|1
|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.2: Normalized number of misses vs. message rate (pthor)

For all seven applications, the effects of an increased message rate are far more pronounced
on the cache–network system than on the primary memory–network system. That result is
in accordance with our intuition, as the cache–network system utilizes the cache for message
handling while the primary memory–network system offloads message handling to the DMA
controller. The difference between the two multicomputer systems is significant at high message
rates, with the cache–network system observing many times more misses than the primary
memory–network system.

Sensitivity to cache pollution is related to memory reference locality. Compare the height
of each line in Figure 4.9 to the height of the corresponding bar in Figure 4.10, a plot of
each application’s uniprocessor cache miss rate. While the heights are not strictly inversely
proportional, they are close enough to imply that locality is a factor in cache sensitivity to
message traffic. That makes sense because cache lines displaced in a high-locality application
are apt to be accessed again, thereby introducing more cache misses than would occur from an
application with less locality.

33

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� � �
�

�

�

�

�

� � � � � � �
�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.3: Normalized number of misses vs. message rate (doduc)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � � � �
�

�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.4: Normalized number of misses vs. message rate (mdljsp2)

34

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � � �
�

�
�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.5: Normalized number of misses vs. message rate (xlisp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � � �
�

�

�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.6: Normalized number of misses vs. message rate (barnes)

35

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � �
�

�
�

�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16

|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.7: Normalized number of misses vs. message rate (fpppp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �

�

�

�

�

�

�

� � � �
�

�

�

�

|
0.001

|
0.010

|
0.100

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

|11

|12

|13

|14

|15

|16
|17

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.8: Normalized number of misses vs. message rate (ear)

36

ear (C)
fpppp (C)

barnes (C)
xlisp (C)

mdljsp2 (C)
doduc (C)

pthor (C)
ear (M)

fpppp (M)
barnes (M)

xlisp (M)
mdljsp2 (M)

doduc (M)
pthor (M)

Uniprocessor
0.0010

0.0100

0.1000
0

5

10

15

20

Simulation

Message rate (words/clock)

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s

Figure 4.9: Normalized number of misses vs. message rate;
(C) indicates the cache–network system,
(M) the primary memory–network system

Data layout is another factor in cache sensitivity. The more an application’s data is scattered
throughout memory, the less likely it is that a single message will displace more than a few
words used by the application.

37

Application

C
ac

h
e

m
is

s
ra

te

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

pthor doduc mdljsp2 xlisp barnes fpppp ear

Figure 4.10: Uniprocessor cache miss rate

38

While Figures 4.2–4.9 accurately represent the cache–network system’s worst-case perfor-
mance1, they do not differentiate between the two sources of cache misses: misses caused by
accesses to displaced application data and misses caused by loading message data into the
cache prior to transmission. Because data are transmitted from uniformly-distributed locations
in memory, they are unlikely to be cache-resident and are therefore almost certain to miss in
the cache. To differentiate misses caused by displaced application data from misses caused by
the pre-transmission cacheing of message data, we present Figures 4.11–4.17, which portray
the same data as Figures 4.2–4.8 except that the former subtract off misses caused by reading
data into the cache in preparation for message sending (i.e. one miss for every cache line sent).
This emphasizes exclusively misses caused by displaced application data. Figure 4.18 combines
Figures 4.11–4.17 into a single three-dimensional graph. Note that one of the abscissas is on a
logarithmic scale.

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5
|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� � � �
�

�

�

�

� � � �
�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5
|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.11: Normalized number of “non-sending” misses vs. message rate (pthor)

1Best case performance—where only cached data is transmitted—resembles uniprocessor performance and is
therefore uninteresting from this study’s perspective.

39

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� � �
�

�

�

�

�

� � � �
�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.12: Normalized number of “non-sending” misses vs. message rate (doduc)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� � �
�

�

�

�

�

� � � �
�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.13: Normalized number of “non-sending” misses vs. message rate (mdljsp2)

40

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � �
�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.14: Normalized number of “non-sending” misses vs. message rate (xlisp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � �
�

�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.15: Normalized number of “non-sending” misses vs. message rate (barnes)

41

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �
�

�

�

�

�

�

� � � �

�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.16: Normalized number of “non-sending” misses vs. message rate (fpppp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

| | | | | | | | | | | | | | | | | | ||0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

� �

�

�

�

�

�

�

� �
�

�

�

�

�

�

|
0.001

|
0.010

|
0.100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

 Message rate (words/clock)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.17: Normalized number of “non-sending” misses vs. message rate (ear)

42

ear (C)
fpppp (C)

barnes (C)
xlisp (C)

mdljsp2 (C)
doduc (C)

pthor (C)
ear (M)

fpppp (M)
barnes (M)

xlisp (M)
mdljsp2 (M)

doduc (M)
pthor (M)

Uniprocessor
0.0010

0.0100

0.1000
0

1

2

3

4

5

Simulation

Message rate (words/clock)

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s

Figure 4.18: Normalized number of “non-sending” misses vs. message rate;
(C) indicates the cache–network system,
(M) the primary memory–network system

43

What is most striking about the data shown in Figures 4.11–4.18 is the proximity of the
cache–network and primary memory–network curves. The implication is that the cache–network
and primary memory–network systems perform displace approximately equal amounts of ap-
plication data. The bulk of the cache–network system’s cache misses from Figures 4.2–4.9 arise
from loading message data into the cache—a necessary operation, but one that would be greatly
reduced if only recently-used (implying cached) data were transmitted.

4.3 Misses versus Cache Size

Future microprocessors will almost certainly contain larger caches than current ones. Therefore,
predicting the performance of forthcoming message-passing systems depends on the sensitivity
of these changes to cache size. To determine that relation, we varied the cache size from
8KB to 64KB and held all other simulation parameters at the default values (see Table 3.3).
Figures 4.19–4.25 plot the normalized number of cache misses observed by each application,
and Figure 4.26 plots the normalized number of cache misses observed by all applications on a
single, three-dimensional graph.

Figures 4.27–4.29 plot the unnormalized number of cache misses to put Figures 4.19– 4.26 in
perspective. Note that for legibility, Figures 4.27–4.29 plot increasing cache sizes back-to-front,
while Figure 4.26 plots them front-to back.

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0
|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.19: Normalized number of misses vs. cache size (pthor)

For all seven applications, each multicomputer’s normalized number of misses increases with
cache size (with the exception of ear from a 32KB–64KB cache—most likely a threshold effect).

44

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.20: Normalized number of misses vs. cache size (doduc)

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.21: Normalized number of misses vs. cache size (mdljsp2)

45

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.22: Normalized number of misses vs. cache size (xlisp)

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.23: Normalized number of misses vs. cache size (barnes)

46

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.24: Normalized number of misses vs. cache size (fpppp)

 Cache-network

 Memory-network

 Uniprocessor

|
8

|
16

|
32

|
64

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

 Cache size (KB)

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

Figure 4.25: Normalized number of misses vs. cache size (ear)

47

8KB
32KBCache size

Simulation

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

64KB

16KB

U
niprocessor

pthor
doduc

m
dljsp2

xlisp
barnes

fpppp
ear

pthor

m
dljsp2

xlisp
barnes

fpppp
ear

doduc

N
o

rm
alized

 n
u

m
b

er o
f m

isses

Memory–network Cache–network

Figure 4.26: Normalized number of misses vs. cache size

Of course, increasing the cache size decreases the absolute number of misses for all applications
and node architectures. The intuition, then, is that the increase in cache misses incurred by
communication is magnified by the lower number of misses.

As Figure 4.26 shows, the primary memory–network system observes essentially the same
number of misses as the uniprocessor system. In the worst case (i.e. the greatest increase in
misses)—ear with a 32KB cache—36% more misses were observed on the primary memory–
network system than on the uniprocessor. In contrast, the cache–network system is extremely
sensitive to message traffic for large cache sizes. In that system’s worst case—also ear with
a 32KB cache—290% more misses are observed than on the uniprocessor! Even the cache–
network system’s best case (pthor with an 8KB cache) shows a 40% increase in number of
misses—even worse than the primary memory–network system’s worst case mentioned above.

The reason the cache–network system consistently exhibits a greater increase in misses than
the primary memory–network system is that the processor reads into the cache all words to
be transmitted. While the read itself might miss in the cache, it may also displace cache lines
used by the application for an additional performance penalty. Because the primary memory–
network system uses DMA to transport messages directly from memory to the network interface,
no additional cache misses are generated for message sends.

48

8KB

16KB

32KB

64KB

Cache size pthor

doduc

m
dljsp2

xlisp

barnes

fpppp

ear

Simulation

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

A
b

so
lu

te n
u

m
b

er o
f m

isses

Figure 4.27: Absolute misses vs. cache size (uniprocessor)

8KB

16KB

32KB

64KB

Cache size

pthor

doduc

m
dljsp2

xlisp

barnes

fpppp

ear

Simulation

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

A
bsolute num

ber of m
isses

Figure 4.28: Absolute misses vs. cache size (memory–network)

49

8KB

16KB

32KB

64KB

Cache size
pthor

doduc

m
dljsp2

xlisp

barnes

fpppp

ear

Simulation

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

A
b

so
lu

te n
u

m
b

er o
f m

isses

Figure 4.29: Absolute misses vs. cache size (cache–network)

50

4.4 Misses versus Message Size

Message-passing applications employ a large variety of message lengths [11]. Therefore, we
investigated the effect of message size on cache performance. We expect message size to im-
pact the cache for two reasons: First, a small number of long messages exhibits more spatial
locality than a large number of short messages. Second, long and short messages tend to be
used differently in message-passing applications: short messages for program control (e.g. for
synchronization and broadcasting state information) and long messages for transporting pro-
gram data structures. The difference in usage is that control message are generally read upon
receipt, while data messages are read piecewise, with intermittent computation.

Our simulators represent that difference in usage—both in this section and all the others—
by immediately processing control messages. To that effect, the primary memory–network
system’s CPU reads control messages upon arrival, but leaves data messages in memory. That
is, it ignores steps 3 and 4 in Figure 3.5. On the cache–network system, however, both control
and data messages follow exactly the path detailed in Section 3.2.3. Because the cache–network
system’s CPU immediately processes all messages by default, control and data messages need
not be differentiated.

To better isolate the effects of different message sizes, we used two sizes of messages in our
experiments—128-word “long” (data) and 4-word “short” (control) messages—and varied their
relative volume while maintaining a constant message rate. Figures 4.30–4.36 graph the results
for each application, and Figures 4.37–4.38 graph the combined results of the memory–network
and cache–network systems, respectively.

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5
|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�
� � �

� � � ��� �

�

�
�

� �
� � � � � �

Figure 4.30: Normalized number of misses vs. fraction of long messages by volume (pthor)

51

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�
� � �

� � � � � �

�

�

�
�

�

�
� � � � �

Figure 4.31: Normalized number of misses vs. fraction of long messages by volume (doduc)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�
�

� �
� � � ��� �

�

�

�
�

�

�
� � � � �

Figure 4.32: Normalized number of misses vs. fraction of long messages by volume (mdljsp2)

52

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�

�
�

�
�

� � � � �

�

�

�

�
�

�
� � � � �

Figure 4.33: Normalized number of misses vs. fraction of long messages by volume (xlisp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�

�
�

�

�
� � ��� �

�

�

�

�
�

�
� �

� � �

Figure 4.34: Normalized number of misses vs. fraction of long messages by volume (barnes)

53

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s
�

�

�
�

�

�
�

� � � �

�

�

�

�
�

�
�

� � � �

Figure 4.35: Normalized number of misses vs. fraction of long messages by volume (fpppp)

� �
 Cache-network

� �
 Memory-network
 Uniprocessor

|
0

|
10

|
20

|
30

|
40

|
50

|
60

|
70

|
80

|
90

|
100

|0.0

|0.5

|1.0

|1.5

|2.0

|2.5

|3.0

|3.5

|4.0

|4.5

|5.0

|5.5

|6.0

 Fraction of long messages by volume

 N
or

m
al

iz
ed

 n
um

be
r

of
 m

is
se

s

�

�

�

�
�

�
� � � � �

�

�

�

�

�

�

� �
� � �

Figure 4.36: Normalized number of misses vs. fraction of long messages by volume (ear)

54

Uniprocessor

pthor
doduc

mdljsp2

xlisp
barnes

fpppp
ear

0

20

40

60

80

100

0

1

2

3

4

5

6

Simulation

Fraction of long messages

by volume

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s

Figure 4.37: Normalized misses vs. fraction of long messages by volume (memory–network)

The insight granted by Figures 4.37–4.38 is that short messages increase cache misses more
than long messages on both the cache–network and primary memory–network systems. As the
long message fraction is varied from 0%–100%, the number of misses decreases an average of
38% on the cache–network system and an average of 64% on the primary memory–network
system. The much higher number of cache misses for short messages is due the lack of temporal
and spatial locality inherent in control messages. Control messages are read into the cache,
where they displace program data and are then used only briefly.

Observe that the cache–network and memory–network curves representing some of the ap-
plications (pthor, mdljsp2, xlisp, and ear), intersect (Figures 4.30, 4.32, 4.33, and 4.36). For
the rest of the applications, the cache–network curve is higher than the memory–network curve
at all points. From this, we gain a second insight: in terms of cache performance, the cache–
network system is sometimes superior to the primary memory–network system at handling short
messages, while the primary memory–network system is always superior to the cache–network
system at handling long messages. The reason long messages influence the cache less on the
primary memory–network system than on the cache–network system is that in the former, mes-
sage data does not pass through the cache, while in the latter, every message transfer displaces
cached data. For short messages, however, the cache–network system has an advantage over
the primary memory–network system for message reception. Although both systems read short
messages into CPU registers, the cache–network system reads directly from network interface

55

Uniprocessor

pthor
doduc

mdljsp2

xlisp
barnes

fpppp
ear

0

20

40

60

80

100

0

1

2

3

4

5

6

Simulation

Fraction of long messages

by volume

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
m

is
se

s

Figure 4.38: Normalized misses vs. fraction of long messages by volume (cache–network)

registers, while the primary memory–network system reads from primary memory. Resultingly,
reading short messages causes cache displacement only in the primary memory–network system,
not in the cache–network system. Sending short messages, however, causes cache misses in the
cache–network system, but not in the primary memory–network system.

The reason some applications favor the cache–network system and others favor the primary
memory–network system when sending short messages is as follows. In all applications, the
cache–network system both sends and receives a larger volume of messages than the primary
memory–network system because the message rate is fixed (at 0.0200 words/clock), but the
cache–network system runs for a longer period of time (due to the larger number of cache
misses). However, the ratio of cache–network to primary memory–network send volume and
the ratio of cache–network to primary memory–network receive volume vary across applica-
tions. Applications that use exclusively short messages favor the cache–network system over
the primary memory–network system if the expression:

cache–network send volume

primary memory–network send volume
−

cache–network receive volume

primary memory–network receive volume

is less than some threshold value. Figure 4.39 plots the value of the above expression for each
application. (Note that, to emphasize the differences between data points, the y-axis is not zero-
origined.) As indicated by Figure 4.39, the expression’s threshold value is approximately 0.222;

56

applications corresponding to lesser values favor the cache–network system for short messages,
while applications corresponding to greater values favor the primary memory–network system.
Furthermore, the distance of each bar from the threshold roughly corresponds to the distance
between the lines in Figures 4.30–4.36 at the 0% long messages position.

Simulation

C
:M

 s
en

d
 r

at
io

 -
 C

:M
 r

ec
ei

ve
 r

at
io

0.2130

0.2140

0.2150

0.2160

0.2170

0.2180

0.2190

0.2200

0.2210

0.2220

0.2230

0.2240

0.2250

0.2260

ear mdljsp2 xlisp pthor barnes fpppp doduc

Figure 4.39: Difference of multicomputer send and receive ratios (sorted)

57

Chapter 5

Discussion

While the previous chapter presented a quantitative analysis of applications’ sensitivity to mes-
sage handling in a variety of scenarios, this chapter examines messaging sensitivity in a more
qualitative manner. First, we interpret the previously-presented data and describe the knowl-
edge gained from our results (Section 5.1). Then, in Section 5.2, we draw upon current trends
in multicomputer design to forecast trends in multicomputer memory hierarchy performance.

5.1 Present Effects of Message Handling on the Cache

Current mainstream multicomputer systems logically connect the network to either the cache
or primary memory. The former scheme—used, for example, in the CM-5—is optimized for
low-latency short messages, while the latter—used, for example, in the Paragon—is optimized
for high-bandwidth long messages. Table 5.1 confirms that claim using data obtained from [17]
and [35]. (The latter reference cites the performance of a Paragon running SUNMOS/PUMA,
an operating system and software architecture geared towards more efficient messaging than
is provided with the software bundled with the Paragon.) Clock frequencies listed are for the
processor clock.

Clock freq. Messaging Bandwidth Messaging Bandwidth
System (MHz) latency (µs) (MB/s) latency (clocks) (bytes/clock)

CM-5 32 3 – 7 4 – 15 96 – 224 0.125 – 0.469

Paragon 50 30 – 50 19 – 167 1,500–2,500 0.380 – 3.340

Table 5.1: Latency and bandwidth of the CM-5 and Paragon

While different network interfaces exhibit different levels of latency and bandwidth, there are
other factors involved in determining parallel computer performance. In this thesis, we proposed
that cache pollution produced by handling messages is also an important consideration.

The results obtained in Section 4.2 confirm our hypothesis that message handling impacts
cache performance. As Figures 4.2–4.9 show, message handling pollutes the cache slightly
when running pthor, doduc, mdljsp2, xlisp, barnes, fpppp, and ear on a node equipped
with a primary memory–network network interface and significantly when running those same
applications on a node equipped with a cache–network network interface. It therefore cannot be

58

assumed that the cache miss rate exhibited by a parallel implementation of an application will
approximately equal that exhibited by a sequential implementation of the same application, even
with equal amounts of application-related work per node. This is an important consideration
when writing parallel programs, because it implies that the more a program communicates,
the more parallelism is required to maintain a given level of performance. Even the primary
memory–network network interface is not immune to cache effects; for example, in heavy traffic,
xlisp, observes over twice as many cache misses on a primary memory–network node as on a
uniprocessor (Figure 4.5).

We showed that optimizing for messaging latency by logically connecting the network inter-
face to the cache causes the side effect of additional cache misses—significantly more than the
number observed on a system that logically connects the network interface to primary memory.
This bears the unfortunate consequence that the tradeoff between latency and bandwidth is
not “fair,” in the sense that optimizing a network interface for low-latency messaging implies a
cache performance penalty, while optimizing for high-bandwidth messaging does not. Of course,
if the intended use of the system is for fine-grained applications, a high-latency architecture is
inappropriate. Towards the end of Chapter 7, we describe some alternative architectures that
may alleviate the impact of message handling on the memory hierarchy.

Short messages are sensitive to messaging latency, because it accounts for a large fraction
of the total transmission time. Short messages are, however, comparatively insensitive to band-
width; the ability to send more words at once means little when there are only a few words to
send. In contrast, long messages are more tolerant of messaging latency because it accounts
for a comparatively small fraction of the total transmission time—overhead is amortized over a
much larger number of words. But long messages do benefit more from higher bandwidth than
do short messages because spooling time dominates for long messages. The greater the rate at
which a message can be transmitted, the sooner it will arrive.

In Section 4.4, we showed that short and long messages exhibit different effects on the
cache. Because of their poorer spatial locality, short messages cause more cache pollution
than long messages. For some applications (pthor, mdljsp2, and ear), the cache–network
system observed less pollution on short messages than the primary memory–network system.
In those applications, the cache–network system reaps an expected double benefit over the
primary memory–network system. Not only do short messages benefit from the cache–network
system’s lower-latency messaging, but they sometimes additionally cause less cache pollution
than that which could be expected on the primary memory–network system. On the other hand,
the inverse is true for long messages. Figures 4.30–4.38 show that for all seven applications,
the primary memory–network system’s cache—unlike the cache–network system’s—is virtually
immune to long messages. Applications that rely on long messages reap a double benefit on
the primary memory–network system because they benefit both from the its higher-bandwidth
messaging as well as decreased cache pollution relative to the cache–network system.

5.2 Future Effects of Message Handling on the Cache

Extrapolating from our findings in Section 4.3, we conclude that message handling will degrade
the performance of future systems more than current systems. According to Figures 4.19–4.26,
cache pollution increases with cache size. That conclusion has serious consequences for multi-
computer nodes, which tend to contain larger caches with each generation. Primarily, it shows
that cache performance might not scale with the performance of other system components.

59

The implication is that, all other factors being equal, the use of larger caches in multicom-
puter microprocessors will decrease parallel speedup. This does not mean that large caches are
detrimental to performance. On the contrary, large caches typically improve performance, but
they cannot be expected to improve performance as much for microprocessors operating in a
multicomputer environment as in a standalone environment.

We further hypothesize that in the future, multicomputer applications will communicate
more than current multicomputer applications. This hypothesis is based on two factors: First,
if fine-grained parallel programming languages such as Id [1], Concurrent Aggregates [6], and
Multilisp [20] gain more acceptance, there will be an increased reliance on communication.
And second, as massively-parallel computers become commonplace, each mode has at least the
potential for increased communication (i.e. there are more nodes with which to communicate).
But, as Figures 4.2–4.9 indicate, an increase in message traffic leads to an increase in cache
misses. Increases in cache misses lead to decreases in sequential node performance and hence
further limit scalability.

60

Chapter 6

Summary and Conclusions

Parallel computing is still in its infancy, and thus, there are still a number of open questions
about the “right” way to architect parallel machines. Of major concern is the network interface,
which serves as the gateway between the CPU and the rest of the system. Sequential perfor-
mance of a parallel machine, as in a uniprocessor, is a function of CPU and memory hierarchy
performance. Parallel performance is largely determined by network interface performance and
furthermore, how it interacts with the memory hierarchy.

In Chapter 2, we surveyed a number of existing node architectures, with particular empha-
sis on the level at which each interacts with the memory hierarchy and unique performance
optimizations. We placed each node architecture into one of two categories: those that logically
connect the network interface to the cache and those that logically connect the network interface
to primary memory. The former, discussed in Section 2.1, supports low-latency communica-
tion at the cost of additional CPU involvement. The latter, discussed in Section 2.2, frees up
the CPU by offloading message transfer to the DMA controller, but increases communication
latency. To address the drawbacks of each design, multicomputer nodes have been built to
support features such as:

• Network connections to both the cache and primary memory,

• DMA transfers from the cache,

• Network interface execution of common fine-grained operations, and

• Higher levels of integration.

In addition to CPU-involvement and latency issues, another—occasionally overlooked—
feature that distinguishes cache–network and primary memory–network interfaces is each one’s
impact on the cache. Cache performance is vital to node—and therefore, system—performance
because cache memory is significantly faster than primary memory. The higher the cache miss
rate is, the more the CPU will have to wait for primary memory to supply it with data. It is
therefore imperative that the network interface minimize cache disruptions. Clearly, architec-
tures that logically connect the network interface to the cache will observe more cache misses
than architectures that logically connect the network interface to primary memory. What
was not previously known, however, is the extent of cache pollution caused by message traffic
observed by each architecture. In this thesis, we demonstrated that logically connecting the
network interface to the cache significantly increases the expected number of cache misses, while

61

logically connecting the network interface to primary memory increases the expected number
of cache misses only slightly.

To reach that conclusion, we constructed trace-based register-transfer-level simulators of
three machines that are identical except that one connects the network and the cache, one
connects the network and primary memory, and the third is a uniprocessor and therefore has
no network component (Chapter 3). With the three simulators, we performed a number of
experiments to determine the effect interprocessor communication has on the cache in a variety
of scenarios (Chapter 4). By varying message rates, cache sizes, and message lengths, we
discovered that processing messages significantly impacts cache on both the cache–network and
primary memory–network systems. As a result, sequential performance degrades noticeably in
the presence of message traffic. While the primary memory–network system observes up to four
times as many cache misses as the uniprocessor under heavy message loads, the cache–network
system observes up to 17 times the uniprocessor amount. The large increase is primarily because
the cache is involved in message handling and, hence, is frequently polluted.

Control messages (short messages with little locality) cause greater cache pollution—and
hence, a greater degradation in system performance—than data messages (long messages with
much locality). However, our simulated cache–network system outperforms the corresponding
primary memory–network system when handling short control messages on certain applications
(pthor, mdljsp2, and ear), although the simulated primary memory–network system is always
superior at handling long data messages.

The impact of message traffic on the cache is likely to increase in the future. Our results
show that larger caches widen the gap between a node’s sequential and parallel performance.
Although increasing the cache size improves performance for both the uniprocessor and multi-
computer nodes we simulated, the performance gain is smaller when a node must additionally
handle interprocessor communication. For example, fpppp running on a primary memory–
network system with an 8KB cache and handling an average of one word of message data every
50 clocks, 25% long messages by volume, observes fewer than 7% more misses than a uniproces-
sor with an 8KB cache. But when both systems are equipped with a 64KB cache, the primary
memory–network system observes over 31% more misses than the uniprocessor.

The implications of our study are that one cannot assume that a microprocessor will perform
equally well on message-passing applications as on sequential applications. Furthermore, there
is a drawback to cache-based message handling. While it provides for low-latency communica-
tion, sending and receiving messages through the cache results in significant cache pollution.
The increased number of cache misses is definitely an important, yet underestimated, factor
contributing to poor speedups of parallel programs over their sequential counterparts.

62

Chapter 7

Future Work

7.1 More Accurate Simulators

Tradeoffs between simulation accuracy and real-time performance must be made in any simulation-
based research project. While we intentionally chose to normalize implementation details (for
reasons expressed previously), there are still some details that could have been added to the
simulators to improve their accuracy, at the expense of increased wall clock time. Note, how-
ever, that wall clock time is a serious concern in simulation-based research; the data used
in this thesis took over 1.4 SPARCstation1-years to generate—and that excludes false starts
and such real-world occurrences as power outages, machine crashes, and unscheduled system
maintenance work (and the corresponding computer downtime).

Simulator accuracy could be enhanced by including support for non-memory instructions,
especially if executed superscalarly, as in the DECchip 21064-AA and most modern micro-
processors. Doing so would additionally provide simulated execution time figures, something
unavailable from memory-only simulations.

Another way to improve simulator accuracy is to simulate multiple nodes instead of a
single node surrounded by a network fringe. That way, sender-receiver patterns could be more
accurately modelled. That is, a simulator could model blocking receives, in which a node
does not perform any additional computation until it receives a message from some source.
By simulating additional nodes, simulators behavior will more closely model multicomputer
behavior, which can potentially provide additional insights our simulators are incapable of.

7.2 Larger Traces

Although the traces we used range in size from 58–294 million memory references, that repre-
sents only about 4–21 seconds of time spent in the memory hierarchy on a system that averages
a 70ns per memory reference (a conservative figure in the context of caches). In contrast, the
applications studied in [11] range in duration from 180–17,520 seconds.2 Note, however, that
Cypher, et. al.’s study is not simulation-based; their measurements are taken from monitors
on actual multicomputers and were therefore gathered in real time. Traces of more “realistic”
(i.e. long-running and computationally-intensive) scientific applications would help researchers

1Primarily SPARCstation 10s and 2s
2Including time spent outside of the memory hierarchy

63

estimate the computation, communication, and memory demands of large applications, such
as those on the scale of Grand Challenge problems [10]. It would also be beneficial to trace
parallel applications (including both memory and communication) to increase the simulations’
correspondence to reality, although doing so comes at the expense of control over simulation
parameters.

In addition, traces could be augmented with operating system or run-time system references.
We did simulate the behavior of a minimal run-time system by generating memory references to
transport data between the network interface and memory. However, real messaging software
may have additional work to perform “behind the scenes,” such as managing virtual memory,
updating tables and data structures used for context switching, and potentially explicitly flush-
ing the cache. It would therefore be useful to know whether messaging software increases or
decreases the memory hierarchy’s sensitivity to message handling.

7.3 Additional Experiments

We simulated only direct-mapped level-one data caches. While direct-mapped caches are the
most common, additional insight could be gained from studying set-associative caches (caches
in which a data word can be placed in one of multiple cache locations), which might be more
resilient to some of the thrashing caused by message handling. For example, ear suffers when-
ever its small (about 9KB) set of often-used data is displaced from a the cache. It is possible
that a two-way set-associative cache would be capable of storing both communication data and
computation data simultaneously, thereby reducing the cache miss rate.

Another avenue for future research is to simulate level-two caches. While few current mul-
ticomputers are equipped with a level-two cache, it is likely that level-two caches will become
more common in the future because they reduce the frequency primary memory latencies are
incurred. It is conceivable that the presence of a level-two cache will cause a cache–network sys-
tem to incur only negligibly more primary memory latencies than a correspondingly-equipped
uniprocessor system. In that case, cache–network systems would be able to sustain greater
message rates and be usable for a greater range of applications.

7.4 Alternative Architectures

The basic cache–network and primary memory–network designs do not represent the only ways
to interface a processor’s memory hierarchy and its network communication system. A worthy
subject of future research might examine the effects of message passing on other architectures,
especially those that connect the network interface and other levels of the memory hierarchy or
multiple levels of the memory hierarchy.

We have already begun one such effort by starting to examine the relationship of network
traffic to cache misses in the proposed DI-multicomputer [7, 8], in which messages can be
routed either directly from registers or memory, and the programmer or compiler chooses which
is more appropriate on a per-message basis. Because of the additional flexibility in the DI-
multicomputer scheme over the cache–network and primary memory–network architectures,
one would expect that machine to perform quite well relative to the architectures discussed in
this thesis.

64

A more evolutionary architecture worth comparing to the cache–network and primary
memory–network architectures is one that combines the two machines’ network interfaces, let-
ting the programmer decide on a per-message basis whether to route messages between the
network and cache or the network and primary memory. We would expect such an archi-
tecture, like the DI-multicomputer, to perform well relative to the single-logical-connection
architectures evaluated in this thesis.

Finally, a variety of architectures were described in Sections 2.1–2.2. A comprehensive
comparison would be interesting, and could provide invaluable information about how each
variation from the “plain vanilla” cache–network and primary memory–network designs alters
the impact of message handling on the local memory hierarchy.

65

Appendix A

Pseudocode for Simulator Modules

A.1 CPU

A.1.1 Cache–Network Simulator

repeat

> Move a message from network to memory hierarchy upon arrival
if an interrupt occured then

let

Lrecv ← message length (input from the network interface)
B ← base memory address at which to store the message

in

for i ← 0 to Lrecv − 1 do

Input a message word, W , from a memory-mapped network interface register
Output W to memory location B + 8i

end

end

else

> Periodically send a message from the memory hierarchy to the network
if Tsend = Tnow then

let

0 ≤ R1, R2 < 1 (randomly)

Lsend←

{

Llong if R1 < Plong
Lshort if R1 ≥ 1− Plong

B ← base memory address from which to read the message

66

Tsend← Tnow − log(
2×R2×Lavg

message rate) network clocks1

in

Output destination processor number to network interface
for i ← 0 to Lsend − 1 do

Input a word, W from memory location B + 8i

Output W to the network interface
end

end

else

> Ordinary memory operations
if the trace data queue 6= ∅ then

Dequeue an address read/write pair

Output to memory the address and read/write flag if read
the address, read/write flag, and data if write

else

Output a memory barrier (see [13])
done ← True

end

end

end

while not done

A.1.2 Primary Memory–Network Simulator

repeat

> Tell DMA to move a message from network to memory upon arrival
if an interrupt occured then

let

Lrecv ← message length (input from the DMA controller)
B ← base memory address at which to store the message

in

Output address=B read/write=write length=Lrecv to the DMA controller’s reg-
isters
if Lrecv ≤ Lshort then

for i ← 0 to Lrecv − 1 do

Input a message word from memory location B + i

end

end

end

else

> Periodically tell DMA to send a message from memory to the network
if Tsend = Tnow then

1The message rate is divided by eight because there are four channels that must together produce
message rate

2
words per clock. The CPU produces an additional

message rate
2

words per clock, for the desired
total.

67

let

0 ≤ R1, R2 < 1 (randomly)

Lsend←

{

Llong if R1 < Plong
Lshort if R1 ≥ 1− Plong

B ← base memory address from which to read the message

Tsend← Tnow − log(
2×R2×Lavg

message rate) network clocks

D ← destination node
in

Output
address=B read/write=read length=Lrecv destination=dest
to the DMA controller’s registers

end

else

> Ordinary memory operations
if the trace data queue 6= ∅ then

Dequeue an address read/write pair

Output to memory the address and read/write flag if read
the address, read/write flag, and data if write

else

Output a memory barrier (see [13])
done ← True

end

end

end

while not done

A.2 Cache

when a (physical) address, A, read/write flag, F , and data word, D arrive from the CPU do

if A is cacheable then

Split the 31-bit A into a

21
︷ ︸︸ ︷

tag

8
︷ ︸︸ ︷

index

2
︷ ︸︸ ︷

offset triple

if C[index]valid = True and C[index]tag = tag then

> Cache hit
if F=Read then

Output C[index]data[offset] to the CPU
else

C[index]data[offset] ← D

end

else

> Cache miss
if F=Read then

Output Flush to the write buffer

Output read 8×
⌊

A

8

⌋

to the bus interface

Input cache line, D = [D0, D1, D2, D3] from the bus interface

68

C[index]data[0 . . .3] ← D

Output C[index]data[offset] to the CPU
end

end

else

> A is not cacheable
if F=Read then

Output read 8×
⌊

A

8

⌋

to the bus interface

Input data word, D from the bus interface
Output D to the CPU

end

end

end

A.3 Write Buffer

Twrite ← Twrite + 1
when a (physical) address, A, read/write flag, F , and data word, D, arrive from the CPU and

F = Write do

if A is cacheable then

Split the 31-bit A into a

29
︷ ︸︸ ︷

tag

2
︷ ︸︸ ︷

offset pair

if ∃i, 0 ≤ i < 4 such that W [i]tag = tag then

> Line is already in write buffer
W [i]data[offset] ← D

W [i]mask[offset] ← Valid

else

> Line is not already in write buffer
if W is full then

Output W [head]data[0 . . .3] and W [head]mask[0 . . .3] to the bus interface starting

at address W [head]tag 00
Input Done from the bus interface
Dequeue W [head]

end

Enqueue W [tail] with

W [tail]tag = tag
W [tail]mask[0 . . .3 (except offset)] = Invalid

W [tail]mask[offset] = Valid

W [tail]data[offset] = D

end

end

Twrite ← Tnow
else

> A is not cacheable
Output D and A to the bus interface
Input Done from the bus interface

69

end

end

if (Wvalidentries > 2) or (Wvalidentries > 0 and Tnow − Twrite ≥ 256) then

Output W [head]data[0 . . .3] and W [head]mask[0 . . .3] to the bus interface starting at address

W [head]tag 00
Input Done from the bus interface
Dequeue W [head]

else

if we just input a “flush” directive then

for each i from head to tail do

Output W [i]data[0 . . .3] and W [i]mask[0 . . .3] to the bus interface

starting at address W [i]tag 00
Input Done from the bus interface
Dequeue W [i]

end

end

end

A.4 Bus Interface

when a (physical) address, A, read/write flag, F , and (if F=Write) data words, D arrive
from the cache or write buffer do

wait until bus is not occupied
case Had bus Cache Write buffer of

last wants bus wants bus

— False True −→ Write buffer gets the bus
— True False −→ Cache gets the bus

Cache True True −→ Write buffer gets the bus
Write buffer True True −→ Cache gets the bus

end

if write buffer has the bus then

Output A, F , and D[0, 1] to the bus
Output A, F , and D[2, 3] to the bus
Output Done to the write buffer

else

Output A and F to the bus
Output Done to the cache
Input D′[0, 1] from the bus
Input D′[2, 3] from the bus
Output D′ to the cache

end

end

70

A.5 Bus

repeat forever

Input a (physical) address, A, read/write flag, F , data words, D, and mask, M

Output A, F , D, and M to the bus interface, memory controller, and network interface
(cache–network) or DMA controller (primary memory–network)

end

A.6 Memory and Memory Controller

repeat forever

for each i ∈ {0, 2} do

Input a (physical) address, A, read/write flag, F , data words, D[i, i + 1], and mask,
M from the bus
if F = Read then

Output D[i, i + 1] to the bus
end

end

end

A.7 Network Interface

A.7.1 Cache–Network Simulator

when data is on the bus do

Input a (physical) address, A, read/write flag, F , and data words, D[0, 1] from the bus
if A = Areg then

if F = Write then

> Send data from the bus to the router
dest ← D[0]
L ← D[1]
Input data words D[2, 3] from the bus and ignore
Output dest to the router
Output L to the router
for i ← 0 to L − 1 do

Input data words, D[i mod 2, i mod 2 + 1] from the bus
Output D[i mod 2] to the router
Output D[i mod 2 + 1] to the router

end

Output Done to the router
else

> Send data from the message FIFO to the bus
for i ← 0 to 3 do

wait until R 6= ∅
Dequeue R into D[i]

end

71

Output D[0, 1] to the bus
Output D[2, 3] to the bus

end

end

end

when data is at the router do

> Buffer data read from the router
Output an interrupt to the CPU
while data is at the router do

Input data word D′ from the router
Enqueue D′ onto queue R

if R is full then

Output Wait to the router
wait until R is no longer full

end

Output Continue to the router
end

end

A.7.2 Primary Memory–Network Simulator

when data is on the bus do

Input a (physical) address, A, read/write flag, F , and data words, D[0, 1] from the bus
Input data words D[2, 3] from the bus
if A = Areg and F = Write then

let

Amem ← D[0]
op ← D[1]
dest ← D[2]
L ← D[3]

in

if op = Send then

> Send data from memory to the router
Output bus request to bus interface
Input Have-Bus from bus interface
Output dest to the router
Output L to the router
for i ← 0 to L− 1 by 32 do

Output Read Amem + i to memory via the bus

Input data words D[0, 1] from memory via the bus
Input data words D[2, 3] from memory via the bus
Output D[0], D[1], D[2], and D[3] to the router

end

Output Done to the router
Output Done to the bus interface

else

72

> Send data to memory from the router
Output bus request to bus interface
Input Have-Bus from bus interface
Dequeue dest from R

Dequeue L from R

for i ← 0 to L− 1 by 32 do

Dequeue R four times—into D[0], D[1], D[2], and D[3], respectively
Output Write Amem + i D[0] D[1] to memory via

the bus
Output Write Amem + i + 16 D[2] D[3] to memory via

the bus
end

Output Done to the bus interface
end

end

end

end

when data is at the router do

> Buffer data read from the router
Output an interrupt to the CPU
while data is at the router do

Input data word D′ from the router
Enqueue D′ onto queue R

if R is full then

Output Wait to the router
wait until R is no longer full

end

Output Continue to the router
end

end

A.8 Network Fringe

repeat forever

> Send data on each of four channels at a random interval
for i ← 0 to 3 do

if Tsend[i] = Tnow then

let

0 ≤ R1, R2 < 1 (randomly)

Lsend←

{

Llong if R1 < Plong
Lshort if R1 ≥ 1− Plong

B ← base memory address from which to read the message

Tsend[i]← Tnow − log(
8×R2×Lavg

message rate) network clocks

in

Output Lsend to the network interface on channel i

73

for j ← 0 to Lsend − 1 do

Input a word, W from memory location B + 8j

Output W to the network interface on channel i

end

end

end

end

end

74

Appendix B

Derivation of “Reasonable”

Message Rates

We used the measurements of computer and application characteristics shown in Table B.1 to
derive the average message rate shown in Table B.2.

Application Computer MHz Procs. Msg. vol. (GB) Time (sec.)
([11], p. 3) ([11], p. 3) ([11], p. 3) ([11], p. 7) ([11], p. 10)

CLIMATE Delta 40 256 965 292

SEMI Delta 40 512 120 108

MOLECULE nCUBE/2 20 512 1,956 59

RENDER Delta 40 32 2 3

EXFLOW Delta 40 512 562 216

QCD nCUBE/1 10 256 7 133

VORTEX nCUBE/2 20 64 1 24

REACT Delta 40 512 132 132

Table B.1: Computer and application characteristics

75

Application 64-bit words
processor

Time (clocks)
1,000,000

64-bit words
clock

CLIMATE 471,191,406 700,800 0.00067

SEMI 29,296,875 259,200 0.00011

MOLECULE 477,539,063 70,800 0.00674

RENDER 7,812,500 7,200 0.00109

EXFLOW 137,207,031 518,400 0.00026

QCD 3,417,969 79,800 0.00004

VORTEX 1,953,125 28,800 0.00007

REACT 32,226,563 316,800 0.00010

µ = 0.00114

Table B.2: Derivation of average message rate

76

Appendix C

Raw Data

This appendix lists the raw data obtained from all our simulations. Each table lists the number
of cache misses and the number of messages and words transmitted for the cache–network and
primary memory–network architectures, and the number of cache missses for the uniprocessor
architecture.1 Note that there is a slight amount of repetition in the following tables; simula-
tions run with all the default parameters (0.0200 words/clock, 16KB cache size, and 91% long
messages by volume—see Section 3.4) are listed in each of the following tables.

C.1 Varying Message Rate

The tables in this section vary the message rate while maintaining a 16KB cache and 91% long
messages by volume.

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 5,277,727 14,278 516,583 5,206,865 14,176 513,132 5,195,877

0.0020 5,361,482 28,969 1,027,016 5,217,692 28,777 1,060,296 5,195,877

0.0100 6,135,884 170,594 6,060,066 5,312,693 153,392 5,649,624 5,195,877

0.0200 7,394,673 413,228 14,675,768 5,450,503 333,868 12,403,916 5,195,877

0.0400 10,837,204 1,220,918 43,228,514 5,828,998 812,764 30,036,512 5,195,877

0.0600 15,440,609 2,767,314 97,746,596 6,432,947 1,528,849 56,542,172 5,195,877

0.0800 20,692,565 5,512,272 194,290,390 7,308,250 2,481,796 91,343,036 5,195,877

0.1000 26,921,532 11,447,674 402,852,468 8,649,772 3,826,785 140,606,156 5,195,877

Table C.1: pthor, varying message rate, 16KB cache, 91% long messages by volume

1No messages are transmitted on a uniprocessor.

77

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 6,980,048 20,282 725,426 6,869,979 20,412 755,804 6,852,588

0.0020 7,108,607 41,535 1,473,680 6,887,541 40,907 1,510,836 6,852,588

0.0100 8,347,365 246,330 8,690,802 7,039,936 219,728 8,112,876 6,852,588

0.0200 10,426,947 609,595 21,652,225 7,261,239 480,551 17,725,796 6,852,588

0.0400 16,303,502 1,874,289 66,452,746 7,869,867 1,171,310 43,308,380 6,852,588

0.0600 24,615,755 4,428,839 156,410,790 8,845,832 2,216,504 81,769,028 6,852,588

0.0800 34,543,218 9,169,884 323,470,011 10,275,260 3,643,627 134,393,652 6,852,588

0.1000 46,728,204 19,692,971 692,848,446 12,504,399 5,704,001 209,589,192 6,852,588

Table C.2: doduc, varying message rate, 16KB cache, 91% long messages by volume

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 4,550,833 17,253 601,393 4,464,340 16,875 622,628 4,450,743

0.0020 4,660,966 35,178 1,256,237 4,479,002 34,488 1,250,896 4,450,743

0.0100 5,663,867 206,320 7,332,772 4,600,620 184,905 6,839,572 4,450,743

0.0200 7,276,824 505,832 17,911,414 4,781,222 406,397 15,062,300 4,450,743

0.0400 11,838,720 1,518,393 53,972,703 5,281,040 994,286 36,767,980 4,450,743

0.0600 17,979,560 3,490,131 123,163,104 6,087,975 1,891,624 69,925,420 4,450,743

0.0800 24,903,404 7,026,837 247,826,110 7,275,107 3,110,038 114,622,132 4,450,743

0.1000 33,035,541 14,641,284 514,929,758 9,101,687 4,864,350 178,755,808 4,450,743

Table C.3: mdljsp2, varying message rate, 16KB cache, 91% long messages by volume

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 2,631,733 11,471 401,488 2,570,077 11,197 416,424 2,560,334

0.0020 2,713,927 23,252 827,612 2,580,484 22,979 841,524 2,560,334

0.0100 3,424,910 137,426 4,905,793 2,666,382 121,479 4,484,016 2,560,334

0.0200 4,606,304 342,294 12,158,827 2,795,696 268,920 9,983,700 2,560,334

0.0400 7,906,971 1,056,179 37,420,847 3,149,070 660,356 24,432,388 2,560,334

0.0600 12,308,896 2,452,622 86,666,760 3,719,531 1,257,849 46,378,344 2,560,334

0.0800 17,199,944 4,942,006 174,311,444 4,569,149 2,089,863 76,905,916 2,560,334

0.1000 22,832,646 10,277,642 361,453,026 5,860,773 3,286,657 120,770,780 2,560,334

Table C.4: xlisp, varying message rate, 16KB cache, 91% long messages by volume

78

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 2,554,380 13,650 482,130 2,470,822 13,342 487,344 2,457,834

0.0020 2,645,822 27,613 961,175 2,483,609 26,709 977,188 2,457,834

0.0100 3,538,678 163,730 5,823,011 2,596,668 145,035 5,365,016 2,457,834

0.0200 4,925,018 406,687 14,351,126 2,760,534 318,439 11,828,044 2,457,834

0.0400 8,711,077 1,246,339 44,203,298 3,198,713 780,831 28,880,772 2,457,834

0.0600 13,691,265 2,877,444 101,670,580 3,893,881 1,493,350 55,088,516 2,457,834

0.0800 19,293,980 5,780,082 203,894,514 4,897,881 2,477,914 91,344,496 2,457,834

0.1000 25,930,741 12,060,836 424,023,695 6,421,405 3,919,451 144,216,544 2,457,834

Table C.5: barnes, varying message rate, 16KB cache, 91% long messages by volume

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 7,898,855 32,545 1,146,458 7,688,751 31,672 1,169,992 7,656,101

0.0020 8,143,789 66,239 2,346,354 7,721,020 64,405 2,367,800 7,656,101

0.0100 10,469,683 396,566 14,085,485 8,004,818 346,210 12,761,872 7,656,101

0.0200 14,419,481 1,009,474 35,856,197 8,420,061 762,037 28,262,396 7,656,101

0.0400 28,929,244 3,514,732 124,466,952 11,215,570 2,021,176 74,655,596 7,656,101

0.0600 47,378,730 8,720,010 308,314,379 13,177,856 3,869,537 142,896,640 7,656,101

0.0800 69,152,816 18,600,177 656,070,586 16,093,202 6,458,486 238,044,792 7,656,101

0.1000 96,078,740 40,766,386 1,433,399,823 20,731,724 10,347,006 380,366,972 7,656,101

Table C.6: fpppp, varying message rate, 16KB cache, 91% long messages by volume

Words/ Cache–network Memory–network Uniproc.

clock Misses Messages Words Misses Messages Words Misses

0.0010 4,010,471 29,594 1,062,326 3,813,446 29,152 1,085,312 3,783,517

0.0020 4,244,923 60,506 2,158,915 3,844,390 58,473 2,157,156 3,783,517

0.0100 6,458,681 363,397 12,920,144 4,109,601 315,663 11,677,040 3,783,517

0.0200 10,185,551 932,185 33,099,587 4,506,569 699,747 25,863,184 3,783,517

0.0400 20,535,185 3,006,412 106,469,685 5,610,036 1,745,341 64,509,460 3,783,517

0.0600 33,724,678 7,106,078 250,846,871 7,432,353 3,401,910 125,713,408 3,783,517

0.0800 47,605,124 14,273,612 503,468,570 10,174,337 5,786,899 213,283,352 3,783,517

0.1000 63,441,773 29,578,815 1,040,620,422 14,441,939 9,402,593 345,719,088 3,783,517

Table C.7: ear, varying message rate, 16KB cache, 91% long messages by volume

79

C.2 Varying Cache Size

The tables in this section vary the cache size while maintaining a message rate of 0.0200
words/clock cache and 91% long messages by volume.

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 9,082,532 476,556 16,868,530 6,799,216 383,252 14,156,268 6,499,826

16 7,394,673 413,228 14,675,768 5,450,503 333,868 12,403,916 5,195,877

32 6,195,803 368,368 13,113,251 4,458,663 297,459 10,929,424 4,227,456

64 5,085,675 325,819 11,556,635 3,514,181 262,302 9,681,144 3,305,886

Table C.8: pthor, 0.0200 words/clock, varying cache, 91% long messages by volume

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 14,824,134 772,391 27,458,671 10,672,528 604,915 22,375,360 10,142,228

16 10,426,947 609,595 21,652,225 7,261,239 480,551 17,725,796 6,852,588

32 7,669,033 504,739 17,839,767 5,099,508 399,805 14,728,424 4,754,300

64 6,192,851 451,171 16,033,680 3,811,286 351,411 12,988,944 3,496,619

Table C.9: doduc, 0.0200 words/clock, varying cache, 91% long messages by volume

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 13,368,701 719,405 25,564,869 9,883,850 580,782 21,461,260 9,418,728

16 7,276,824 505,832 17,911,414 4,781,222 406,397 15,062,300 4,450,743

32 6,281,973 467,312 16,653,019 4,014,843 378,673 14,028,756 3,709,819

64 4,040,185 385,765 13,679,091 2,113,068 311,406 11,578,464 1,853,952

Table C.10: mdljsp2, 0.0200 words/clock, varying cache, 91% long messages by volume

80

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 6,080,464 398,334 14,156,922 3,957,730 312,545 11,596,880 3,679,856

16 4,606,304 342,294 12,158,827 2,795,696 268,920 9,983,700 2,560,334

32 3,827,812 312,114 11,055,007 2,202,676 245,890 9,090,692 1,977,926

64 2,865,940 275,064 9,732,240 1,322,849 212,163 7,875,196 1,106,114

Table C.11: xlisp, 0.0200 words/clock, varying cache, 91% long messages by volume

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 7,296,512 509,033 18,088,014 4,763,232 404,369 14,982,312 4,419,615

16 4,925,018 406,687 14,351,126 2,760,534 318,439 11,828,044 2,457,834

32 3,742,295 359,196 12,734,507 1,738,721 275,732 10,187,652 1,468,130

64 2,741,493 318,190 11,260,133 1,036,587 246,767 9,128,076 805,680

Table C.12: barnes, 0.0200 words/clock, varying cache, 91% long messages by volume

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 29,210,020 1,558,912 55,359,722 19,761,836 1,179,064 43,453,712 18,539,704

16 14,419,481 1,009,474 35,856,197 8,420,061 762,037 28,262,396 7,656,101

32 6,818,687 709,908 25,250,295 2,786,415 538,451 19,914,628 2,265,442

64 5,350,232 650,868 23,066,686 1,962,612 506,604 18,787,004 1,497,548

Table C.13: fpppp, 0.0200 words/clock, varying cache, 91% long messages by volume

Cache Cache–network Memory–network Uniproc.

size (KB) Misses Messages Words Misses Messages Words Misses

8 17,830,576 1,235,075 43,782,691 11,124,773 956,031 35,328,128 10,213,495

16 10,185,551 932,185 33,099,587 4,506,569 699,747 25,863,184 3,783,517

32 6,625,324 790,091 28,023,626 2,251,418 611,206 22,683,980 1,698,138

64 5,577,861 747,645 26,456,267 1,925,226 598,182 22,138,432 1,457,226

Table C.14: ear, 0.0200 words/clock, varying cache, 91% long messages by volume

81

C.3 Varying Message Size

The tables in this section vary the fraction of long messages by volume while maintaining a
message rate of 0.0200 words/clock and a 16KB cache.

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 10,231,694 4,763,388 21,311,761 10,310,737 4,642,420 27,512,304 5,195,877

24 9,140,323 3,253,623 18,590,716 8,473,221 3,057,490 22,026,188 5,195,877

40 8,614,014 2,483,845 17,296,299 7,585,067 2,279,276 19,216,740 5,195,877

50 8,286,679 2,013,163 16,481,071 7,068,291 1,816,032 17,596,948 5,195,877

57 8,078,674 1,699,240 16,038,404 6,723,849 1,509,452 16,529,804 5,195,877

78 7,584,259 885,492 14,934,170 5,895,833 753,854 13,888,876 5,195,877

89 7,424,681 501,100 14,633,336 5,532,131 410,449 12,621,616 5,195,877

91 7,394,673 413,228 14,675,768 5,450,503 333,868 12,403,916 5,195,877

97 7,330,220 219,478 14,619,557 5,284,210 174,498 11,811,416 5,195,877

99 7,318,069 150,756 14,718,999 5,225,496 116,623 11,570,344 5,195,877

100 7,304,176 114,676 14,735,107 5,196,030 88,894 11,556,112 5,195,877

Table C.15: pthor, 0.0200 words/clock, 16KB cache, varying volume of long messages

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 15,432,561 7,377,040 33,018,241 15,336,790 7,052,366 41,848,200 6,852,588

24 13,462,589 4,950,183 28,307,586 12,210,763 4,555,597 32,777,212 6,852,588

40 12,504,773 3,741,001 25,937,882 10,738,028 3,359,982 28,406,920 6,852,588

50 11,974,923 3,018,012 24,751,875 9,879,121 2,663,179 25,777,548 6,852,588

57 11,600,676 2,536,793 23,926,131 9,314,392 2,198,962 24,003,700 6,852,588

78 10,791,300 1,315,262 22,205,160 7,975,207 1,086,616 19,908,052 6,852,588

89 10,476,936 739,080 21,550,415 7,388,476 589,806 18,129,060 6,852,588

91 10,426,947 609,595 21,652,225 7,261,239 480,551 17,725,796 6,852,588

97 10,317,114 325,056 21,617,883 6,994,022 248,938 16,914,084 6,852,588

99 10,282,096 221,092 21,587,753 6,900,470 167,834 16,572,928 6,852,588

100 10,264,212 168,068 21,595,654 6,852,799 126,301 16,419,888 6,852,588

Table C.16: doduc, 0.0200 words/clock, 16KB cache, varying volume of long messages

82

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 11,041,232 5,911,714 26,447,704 11,415,222 5,976,878 35,398,616 4,450,743

24 9,595,638 4,015,407 22,958,499 8,852,831 3,868,595 27,837,340 4,450,743

40 8,882,633 3,050,757 21,177,949 7,640,588 2,854,684 24,057,108 4,450,743

50 8,470,810 2,470,100 20,223,763 6,929,198 2,258,165 21,886,236 4,450,743

57 8,189,341 2,079,777 19,587,687 6,471,893 1,869,563 20,515,780 4,450,743

78 7,560,228 1,083,088 18,238,031 5,363,280 919,374 16,923,696 4,450,743

89 7,337,827 612,764 17,979,821 4,886,290 498,198 15,327,212 4,450,743

91 7,276,824 505,832 17,911,414 4,781,222 406,397 15,062,300 4,450,743

97 7,202,338 268,959 17,869,704 4,564,956 209,599 14,234,304 4,450,743

99 7,193,235 184,421 17,980,870 4,489,174 141,140 13,991,312 4,450,743

100 7,193,930 139,898 17,976,447 4,450,862 107,139 13,930,224 4,450,743

Table C.17: mdljsp2, 0.0200 words/clock, 16KB cache, varying volume of long messages

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 7,443,590 4,181,617 18,714,713 7,498,929 4,076,456 24,185,460 2,560,334

24 6,341,111 2,803,316 15,995,760 5,688,630 2,615,033 18,808,040 2,560,334

40 5,796,351 2,116,715 14,691,827 4,824,344 1,920,054 16,230,788 2,560,334

50 5,500,106 1,710,258 14,019,157 4,323,595 1,513,370 14,673,696 2,560,334

57 5,283,268 1,430,406 13,493,253 3,998,387 1,252,754 13,703,004 2,560,334

78 4,827,823 741,605 12,530,731 3,211,096 612,983 11,285,952 2,560,334

89 4,639,969 415,631 12,137,794 2,871,180 331,111 10,197,304 2,560,334

91 4,606,304 342,294 12,158,827 2,795,696 268,920 9,983,700 2,560,334

97 4,540,987 182,403 12,094,197 2,640,369 138,647 9,410,956 2,560,334

99 4,510,218 123,662 12,068,589 2,587,511 93,705 9,298,068 2,560,334

100 4,545,758 95,091 12,219,000 2,560,419 70,228 9,130,024 2,560,334

Table C.18: xlisp, 0.0200 words/clock, 16KB cache, varying volume of long messages

83

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 8,298,789 5,035,992 22,541,301 8,199,725 4,780,526 28,390,768 2,457,834

24 7,022,641 3,376,191 19,300,804 6,181,785 3,091,046 22,259,996 2,457,834

40 6,391,566 2,545,019 17,716,903 5,196,151 2,277,249 19,243,856 2,457,834

50 6,011,248 2,051,935 16,828,595 4,610,726 1,798,195 17,474,572 2,457,834

57 5,764,990 1,716,960 16,153,939 4,222,684 1,484,445 16,228,628 2,457,834

78 5,218,416 884,243 14,940,655 3,274,518 726,510 13,380,860 2,457,834

89 4,986,681 495,735 14,493,497 2,852,373 390,720 12,020,704 2,457,834

91 4,925,018 406,687 14,351,126 2,760,534 318,439 11,828,044 2,457,834

97 4,875,373 217,480 14,439,733 2,562,903 164,069 11,157,736 2,457,834

99 4,862,247 148,631 14,470,961 2,492,513 110,096 10,907,128 2,457,834

100 4,843,564 112,549 14,461,733 2,457,919 82,701 10,752,180 2,457,834

Table C.19: barnes, 0.0200 words/clock, 16KB cache, varying volume of long messages

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 24,589,816 12,950,434 57,968,838 24,141,111 12,216,177 72,545,904 7,656,101

24 22,977,597 9,159,906 52,369,860 20,133,479 8,245,236 59,343,180 7,656,101

40 20,898,473 6,850,231 47,530,242 17,070,512 5,999,937 50,711,680 7,656,101

50 19,706,812 5,485,845 44,930,778 15,307,082 4,713,374 45,717,488 7,656,101

57 18,959,891 4,589,867 43,274,474 14,157,956 3,876,153 42,349,108 7,656,101

78 17,195,363 2,349,723 39,684,310 11,432,659 1,882,157 34,629,076 7,656,101

89 16,529,329 1,319,626 38,597,298 10,250,721 1,010,806 31,182,952 7,656,101

91 14,419,481 1,009,474 35,856,197 8,420,061 762,037 28,262,396 7,656,101

97 14,167,811 533,441 35,486,661 7,919,747 392,081 26,656,116 7,656,101

99 14,121,310 364,945 35,575,379 7,745,052 262,427 25,959,536 7,656,101

100 14,067,787 276,124 35,480,189 7,656,717 199,327 25,914,432 7,656,101

Table C.20: fpppp, 0.0200 words/clock, 16KB cache, varying volume of long messages

84

Long msg. Cache–network Memory–network Uniproc.

vol. (%) Misses Messages Words Misses Messages Words Misses

0 19,234,075 11,929,684 53,393,731 19,736,246 11,890,001 70,571,704 3,783,517

24 15,775,332 7,902,876 45,105,540 13,847,785 7,424,230 53,449,528 3,783,517

40 14,051,630 5,916,761 41,123,079 11,024,655 5,349,920 45,301,964 3,783,517

50 13,043,499 4,736,730 38,784,683 9,394,410 4,168,195 40,412,976 3,783,517

57 12,369,772 3,961,872 37,367,491 8,329,399 3,404,876 37,186,056 3,783,517

78 10,855,601 2,022,982 34,080,304 5,804,377 1,621,166 29,837,368 3,783,517

89 10,279,045 1,133,635 33,170,791 4,735,922 864,009 26,673,000 3,783,517

91 10,185,551 932,185 33,099,587 4,506,569 699,747 25,863,184 3,783,517

97 9,948,358 493,217 32,795,616 4,031,059 359,513 24,445,132 3,783,517

99 9,923,707 338,020 32,970,773 3,866,478 240,048 23,785,084 3,783,517

100 9,946,199 257,797 33,125,842 3,784,669 181,053 23,537,672 3,783,517

Table C.21: ear, 0.0200 words/clock, 16KB cache, varying volume of long messages

85

Appendix D

Data to Accompany Graphs

This appendix provides the raw data used to generate the graphs in Chapter 4.

D.1 Data Corresponding to Section 4.2

Words/ Uniproc. Memory–network

clock All pthor doduc mdljsp2 xlisp barnes fpppp ear

0.0010 1.0000 1.0021 1.0025 1.0031 1.0038 1.0053 1.0043 1.0079

0.0020 1.0000 1.0042 1.0051 1.0063 1.0079 1.0105 1.0085 1.0161

0.0100 1.0000 1.0225 1.0273 1.0337 1.0414 1.0565 1.0455 1.0862

0.0200 1.0000 1.0490 1.0596 1.0743 1.0919 1.1232 1.0998 1.1911

0.0400 1.0000 1.1219 1.1485 1.1866 1.2299 1.3014 1.4649 1.4828

0.0600 1.0000 1.2381 1.2909 1.3679 1.4528 1.5843 1.7212 1.9644

0.0800 1.0000 1.4065 1.4995 1.6346 1.7846 1.9928 2.1020 2.6891

0.1000 1.0000 1.6647 1.8248 2.0450 2.2891 2.6126 2.7079 3.8171

Table D.1: Normalized number of misses vs. message rate (memory–network)

86

Words/ Uniproc. Cache–network

clock All pthor doduc mdljsp2 xlisp barnes fpppp ear

0.0010 1.0000 1.0158 1.0186 1.0225 1.0279 1.0393 1.0317 1.0600

0.0020 1.0000 1.0319 1.0374 1.0472 1.0600 1.0765 1.0637 1.1220

0.0100 1.0000 1.1809 1.2181 1.2726 1.3377 1.4398 1.3675 1.7071

0.0200 1.0000 1.4232 1.5216 1.6350 1.7991 2.0038 1.8834 2.6921

0.0400 1.0000 2.0857 2.3792 2.6599 3.0883 3.5442 3.7786 5.4275

0.0600 1.0000 2.9717 3.5922 4.0397 4.8075 5.5705 6.1884 8.9136

0.0800 1.0000 3.9825 5.0409 5.5953 6.7179 7.8500 9.0324 12.5822

0.1000 1.0000 5.1813 6.8191 7.4225 8.9178 10.5502 12.5493 16.7679

Table D.2: Normalized number of misses vs. message rate (cache–network)

Words/ Uniproc. Memory–network

clock All pthor doduc mdljsp2 xlisp barnes fpppp ear

0.0010 1.0000 1.002 1.003 1.003 1.004 1.005 1.004 1.008

0.0020 1.0000 1.004 1.005 1.006 1.008 1.011 1.009 1.016

0.0100 1.0000 1.023 1.027 1.034 1.041 1.057 1.046 1.086

0.0200 1.0000 1.049 1.060 1.074 1.092 1.123 1.100 1.191

0.0400 1.0000 1.122 1.149 1.187 1.230 1.301 1.465 1.483

0.0600 1.0000 1.238 1.291 1.368 1.453 1.584 1.721 1.964

0.0800 1.0000 1.407 1.500 1.635 1.785 1.993 2.102 2.689

0.1000 1.0000 1.665 1.825 2.045 2.289 2.613 2.708 3.817

Table D.3: Normalized number of “non-sending” misses vs. message rate (memory–network)

Words/ Uniproc. Cache–network

clock All pthor doduc mdljsp2 xlisp barnes fpppp ear

0.0010 1.0000 1.003 1.005 1.005 1.008 1.014 1.012 1.024

0.0020 1.0000 1.006 1.010 1.011 1.017 1.027 1.024 1.049

0.0100 1.0000 1.034 1.059 1.065 1.097 1.142 1.136 1.276

0.0200 1.0000 1.077 1.135 1.145 1.218 1.293 1.310 1.621

0.0400 1.0000 1.183 1.330 1.350 1.506 1.600 2.018 2.384

0.0600 1.0000 1.314 1.582 1.595 1.821 1.919 2.633 3.064

0.0800 1.0000 1.458 1.857 1.850 2.116 2.238 3.254 3.602

0.1000 1.0000 1.622 2.165 2.125 2.420 2.599 3.925 4.119

Table D.4: Normalized number of “non-sending” misses vs. message rate (cache–network)

87

D.2 Data Corresponding to Section 4.3

Cache Uniproc. Memory–network

size (KB) All pthor doduc mdljsp2 xlisp barnes fpppp ear

8 1.000 1.046 1.052 1.049 1.076 1.078 1.066 1.089

16 1.000 1.049 1.060 1.074 1.092 1.123 1.100 1.191

32 1.000 1.055 1.073 1.082 1.114 1.184 1.230 1.326

64 1.000 1.063 1.090 1.140 1.196 1.287 1.311 1.321

Table D.5: Normalized number of misses vs. cache size (memory–network)

Cache Uniproc. Cache–network

size (KB) All pthor doduc mdljsp2 xlisp barnes fpppp ear

8 1.000 1.397 1.462 1.419 1.652 1.651 1.576 1.746

16 1.000 1.423 1.522 1.635 1.799 2.004 1.883 2.692

32 1.000 1.466 1.613 1.693 1.935 2.549 3.010 3.902

64 1.000 1.538 1.771 2.179 2.591 3.403 3.573 3.828

Table D.6: Normalized number of misses vs. cache size (cache–network)

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 6,499,826 6,799,216 9,082,532

16 5,195,877 5,450,503 7,394,673

32 4,227,456 4,458,663 6,195,803

64 3,305,886 3,514,181 5,085,675

Table D.7: Absolute number of misses vs. cache size (pthor)

88

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 10,142,228 10,672,528 14,824,134

16 6,852,588 7,261,239 10,426,947

32 4,754,300 5,099,508 7,669,033

64 3,496,619 3,811,286 6,192,851

Table D.8: Absolute number of misses vs. cache size (doduc)

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 9,418,728 9,883,850 13,368,701

16 4,450,743 4,781,222 7,276,824

32 3,709,819 4,014,843 6,281,973

64 1,853,952 2,113,068 4,040,185

Table D.9: Absolute number of misses vs. cache size (mdljsp2)

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 3,679,856 3,957,730 6,080,464

16 2,560,334 2,795,696 4,606,304

32 1,977,926 2,202,676 3,827,812

64 1,106,114 1,322,849 2,865,940

Table D.10: Absolute number of misses vs. cache size (xlisp)

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 4,419,615 4,763,232 7,296,512

16 2,457,834 2,760,534 4,925,018

32 1,468,130 1,738,721 3,742,295

64 805,680 1,036,587 2,741,493

Table D.11: Absolute number of misses vs. cache size (barnes)

89

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 18,539,704 19,761,836 29,210,020

16 7,656,101 8,420,061 14,419,481

32 2,265,442 2,786,415 6,818,687

64 1,497,548 1,962,612 5,350,232

Table D.12: Absolute number of misses vs. cache size (fpppp)

Cache Memory– Cache–

size (KB) Uniprocessor network network

8 10,213,495 11,124,773 17,830,576

16 3,783,517 4,506,569 10,185,551

32 1,698,138 2,251,418 6,625,324

64 1,457,226 1,925,226 5,577,861

Table D.13: Absolute number of misses vs. cache size (ear)

90

D.3 Data Corresponding to Section 4.4

Fraction Uniproc. Memory–network

long msgs. All pthor doduc mdljsp2 xlisp barnes fpppp ear

0% 1.00 1.98 2.24 2.56 2.93 3.15 3.34 5.22

24% 1.00 1.63 1.78 1.99 2.22 2.63 2.52 3.66

40% 1.00 1.46 1.57 1.72 1.88 2.23 2.11 2.91

50% 1.00 1.36 1.44 1.56 1.69 2.00 1.88 2.48

57% 1.00 1.29 1.36 1.45 1.56 1.85 1.72 2.20

78% 1.00 1.13 1.16 1.21 1.25 1.49 1.33 1.53

89% 1.00 1.06 1.08 1.10 1.12 1.34 1.16 1.25

91% 1.00 1.05 1.06 1.07 1.09 1.10 1.12 1.19

97% 1.00 1.02 1.02 1.03 1.03 1.03 1.04 1.07

99% 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02

100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table D.14: Normalized number of misses vs. fraction of long messages (memory–network)

Fraction Uniproc. Cache–network

long msgs. All pthor doduc mdljsp2 xlisp barnes fpppp ear

0% 1.00 1.97 2.25 2.48 2.91 3.21 3.38 5.08

24% 1.00 1.76 1.96 2.16 2.48 3.00 2.86 4.17

40% 1.00 1.66 1.82 2.00 2.26 2.73 2.60 3.71

50% 1.00 1.59 1.75 1.90 2.15 2.57 2.45 3.45

57% 1.00 1.55 1.69 1.84 2.06 2.48 2.35 3.27

78% 1.00 1.46 1.57 1.70 1.89 2.25 2.12 2.87

89% 1.00 1.43 1.53 1.65 1.81 2.16 2.03 2.72

91% 1.00 1.42 1.52 1.63 1.80 1.88 2.00 2.69

97% 1.00 1.41 1.51 1.62 1.77 1.85 1.98 2.63

99% 1.00 1.41 1.50 1.62 1.76 1.84 1.98 2.62

100% 1.00 1.41 1.50 1.62 1.78 1.84 1.97 2.63

Table D.15: Normalized number of misses vs. fraction of long messages (cache–network)

91

Bibliography

[1] Arvind and K. Ekanadham. Future scientific programming on parallel machines. Journal
of Parallel and Distributed Computing, 5(5):460–493, October 1988.

[2] Thomas Ball and James R. Larus. Optimally profiling and tracing pro-
grams. Computer Sciences Technical Report 1031, University of Wisconsin–Madison,
1210 West Dayton St.; Madison, WI 53706, September 1991. Available from
ftp://ftp.cs.wisc.edu/tech-reports/reports/91/tr1031.ps.Z.

[3] Carl J. Beckmann. CARL: An architecture simulation language. Report 1066, Center for
Supercomputing Research and Development, University of Illinois at Urbana-Champaign,
305 Talbot, 104 South Wright St.; Urbana, IL 61801-2932, December 1990.

[4] John Bruner. Parsim user interface reference manual. Report 1002, Center for Super-
computing Research and Development, University of Illinois at Urbana-Champaign, 305
Talbot, 104 South Wright St.; Urbana, IL 61801-2932, September 1990.

[5] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence of parallel
computations. Communications of the ACM, 24(11):198–206, April 1981.

[6] Andrew A. Chien. Concurrent Aggregates: Supporting Modularity in Massively-Parallel
Programs. MIT Press, Cambridge, MA, 1993.

[7] Lynn Choi and Andrew A. Chien. Integrating networks and memory hierarchies in a mul-
ticomputer node architecture. In Proceedings of the International Parallel Processing Sym-
posium, April 1994. Available from http://www-csag.cs.uiuc.edu/papers/ipps94.ps.

[8] Lynn Choi and Andrew A. Chien. The design and performance evaluation of the DI-
multicomputer. Journal of Parallel and Distributed Computing, 199x. Submitted for pub-
lication.

[9] SPEC Steering Committee. DESCR.n files in SPEC distribution, January 1992.

[10] Committee on Information and Communication (CIC) of the National Science and Tech-
nology Council (NSTC). High performance computing and communications: Technology
for the national information infrastructure (Supplement to the president’s fiscal year 1995
budget). Available from http://www.hpcc.gov/blue95, 1994.

[11] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural requirements of paral-
lel scientific applications with explicit communication. In Proceedings of the International
Symposium on Computer Architecture, pages 2–13. IEEE Computer Society, 1993.

92

[12] William J. Dally, J. A. Stuart Fiske, John S. Keen, Richard A. Lethin, Michael D. Noakes,
Peter R. Nuth, Roy E. Davison, and Gregory A. Fyler. The message-driven processor.
IEEE Micro, pages 23–39, April 1992.

[13] Digital Equipment Corporation. Alpha Architecture Handbook, 1992. Order number
EC-H1689-10.

[14] Digital Equipment Corporation, Maynard, MA. DECchip 21064-AA Microprocessor Hard-
ware Reference Manual, 1st edition, October 1992. Order number EC-N0079-72.

[15] Kaivalya M. Dixit. CINT2.0 and CFP2.0 benchmark descriptions. SPEC Newsletter,
3(4):18–21, December 1991.

[16] Kaivalya M. Dixit. New CPU benchmark suites from SPEC. In Thirty-Seventh IEEE
Computer Society International Conference, pages 305–310, Spring 1992.

[17] C. Leiserson et al. The network architecture of the Connection Machine CM-5. In Pro-
ceedings of the Symposium on Parallel Algorithms and Architectures, 1992. Available from
ftp://cmns.think.com/doc/Papers/net.ps.Z.

[18] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–
1909, 1966.

[19] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, and Alan Jay Smith. Cache
performance of the SPEC92 benchmark suite. IEEE Micro, pages 17–27, August 1993.

[20] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[21] M. Homewood and M. McLaren. Meiko CS-2 interconnect Elan – Elite design. In Proceed-
ings of the IEEE Hot Interconnects Symposium. IEEE TCMM, August 1993.

[22] Intel Corporation. iPSC/2 and iPSC/860 User’s Guide, June 1990. Order number
311532-006.

[23] Intel Corporation. Paragon XP/S Product Overview, 1991.

[24] Hiroaki Ishihata, Takeshi Horie, Satoshi Inano, Toshiyuki Shimizu, and Sadayuki Kato.
An architecture of highly parallel computer AP1000. In Proceedings of the IEEE Pa-
cific Rim Conference on Communications, Computers, and Signal Processing, pages 13–
16, May 1991. Available from ftp://fcapwide.fujitsu.co.jp/ap1000/english/rim/

rim 91.ps.Z.

[25] John Kubiatowicz and Anant Agarwal. The anatomy of a message in the Alewife multi-
processor. In Proceedings of the International Conference on Supercomputing, July 1993.
Available from ftp://cag.lcs.mit.edu/pub/papers/anatomy.ps.Z.

[26] James R. Larus and Thomas Ball. Rewriting executable files to measure pro-
gram behavior. Computer Sciences Technical Report 1083, University of Wisconsin–
Madison, 1210 West Dayton St.; Madison, WI 53706, March 1992. Available from
ftp://ftp.cs.wisc.edu/tech-reports/reports/91/tr1083.ps.Z.

93

[27] Barry A. Maskas, Stephen F. Shirron, and Nicholas A. Warchol. Design and performance
of the DEC 4000 AXP departmental server computing systems. Digital Technical Jour-
nal, 4(4):1–18, 1992. Available from ftp://ftp.digital.com/pub/Digital/info/DTJ/

axp-dec-4000.ps.

[28] David May, Roger Shepherd, and Peter Thompson. The T9000 Transputer. Technical
report, Inmos Limited, 1000 Aztec West, Almondsbury, Bristol BS12 4SQ, UK, 1993.
Available from ftp://ftp.inmos.co.uk/inmos/info/T9000/T9000.ps.Z.

[29] John Palmer and Guy L. Steele Jr. Connection machine model CM-5 system overview.
In Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 474–483,
1992.

[30] C. Seitz, N. Boden, J. Seizovic, and W. Su. The design of the Caltech Mosaic C multicom-
puter. In Proceedings of the University of Washington Symposium on Integrated Systems,
1993.

[31] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel
applications for shared memory. Technical report CSL-TR-91-469, Computer Systems
Laboratory, Stanford University, Stanford University, CA 94305, April 1991. Available
from ftp://mojave.stanford.edu/pub/splash/report/splash.ps.

[32] A. J. Smith. Cache memories. ACM Computing Surveys, 14(3):473–530, September 1982.

[33] Craig B. Stunkel and W. Kent Fuchs. An analysis of cache performance for a hypercube
multicomputer. IEEE Transactions on Parallel and Distributed Systems, 3(4):421–432,
July 1992.

[34] Günter Watzlawik and Franz Hutner. A pipelined network interface for a parallel computer.
Technical report, Bull/ECRC/ICL/Siemens, ZFE ST SN 22, Siemens AG, Otto-Hahn-Ring
6, 81730 München, Germany, 1993.

[35] Stephen Wheat, Barney Maccabe, Rolf Riesen, David van Dresser, and Mark Stall-
cup. Overheads from SUNMOS/PUMA presentation, September 1993. Available from
http://www.ccsf.caltech.edu/paragon/sunmos/sunmos slides.ps.

[36] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison-Wesley, second
edition, 1984.

94

